

MRCET CAMPUS

MALLA REDDY COLLEGE OF ENGINEERING &TECHNOLOGY
(AUTONOMOUS INSTITUTION –UGC,GOVT. OF INDIA)

Affiliated to JNTUH, Hyderabad, Approved by AICTE ‐ Accredited by NBA & NAAC – ‘A’ Grade ‐ ISO 9001:2015
Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad – 500100, Telangana State, India

 PYTHON PROGRAMMING
DIGITAL NOTES

B.TECH I YEAR – I SEM (R22)
(2023-2024)

1

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY

I Year B.Tech-I Sem L /T/P/C

3/-/-/3

(R22A0582) PYTHON PROGRAMMING

COURSE OBJECTIVES:

The students will be able to

1. To read and write simple Python programs.

2. To develop Python programs with conditionals and loops.

3. To develop Python programs with using arrays and functions.

4. To use Python data structures–- lists, tuples, dictionaries.

5. To do input/output with files in Python.

UNIT- I

Introduction to Computing – Computer Systems, Functional Units of a Computer, Computer

Languages, Language Translators, Representation of Algorithms and Flowcharts with examples.

Introduction to Python Programming Language: Introduction to Python Language, Features

of Python, Python Installation, Python Input and Output Statements, Numeric Data Types:

int, float, boolean, complex and string and its operations, Standard Data Types: List, Tuples,

Sets and Dictionaries, Data Type conversions, Comments in Python.

UNIT- II
Variables and Operators: Understanding Python variables, multiple variable declarations,

Operators in Python: Arithmetic operators, Assignment operators, Comparison operators,

Logical operators, Identity operators, Membership operators, Bitwise operators, Precedence

of operators, Expressions.

Control Flow and Loops: Indentation, if statement, if-else statement, chained conditional if-

elif -else statement, Loops: While loop, for loop using ranges, Loop manipulation using break,

continue and pass.

UNIT- III

Arrays: Advantages of Arrays, Creating an Array, Importing the Array Module, Indexing and

Slicing on Arrays, Types of arrays, working with arrays using numpy.

UNIT- IV

Functions: Defining a function, Calling Functions, Passing parameters and arguments, Python

Function arguments: Positional Arguments, Keyword Arguments, Default Arguments,

Variable-length arguments, Scope of the Variables in a Function – Local and Global Variables,

Fruitful Functions, Anonymous functions or Lambda functions, Powerful Lambda functions in

Python.

UNIT- V

File Handling in Python: Introduction to files, Text files and Binary files, Access Modes,

Writing Data to a File, Reading Data from a File, File input / output functions.

Error Handling in Python: Introduction to Errors and Exceptions: Compile-Time Errors, Runtime

Errors, Logical Errors, Types of Exceptions, Exception Handling, Handling Multiple Exceptions.

COURSE OUTCOMES:

Upon completion of the course, students will be able to

1. Read, write, execute by hand simple Python programs.

2. Structure simple Python programs for solving problems.

3. Decompose a Python program into arrays and functions.

4. Represent compound data using Python lists, tuples, dictionaries.

5. Read and write data from/to files in Python programs.

TEXT BOOKS

1. R. Nageswara Rao, “Core Python Programming”, dreamtech.

2. Allen B. Downey, ``Think Python: How to Think Like a Computer Scientist„„, 2nd

edition,Updated for Python 3, Shroff/O„Reilly Publishers, 2016.

3. Python Programming: A Modern Approach, Vamsi Kurama, Pearson.

REFERENCE BOOKS:

1. Core Python Programming, W.Chun, Pearson.

2. Introduction to Python, Kenneth A. Lambert, Cengage.

3. Learning Python, Mark Lutz, Orielly.

PYTHON PROGRAMMING I YEAR/II SEM MRCET

INDEX

UNIT

TOPIC

PAGE NO

I

Introduction to Computing – Computer Systems

1-4
Functional Units of a Computer 4-5

Computer Languages, Language Translators, 6-8
Algorithms and Flowcharts 9-10
Introduction to Python Programming
Language: Introduction to Python Language

and installation and Features

11-13

Input Output Functions 14-16
Numeric Data Types: int, float, Boolean,
complex and string and its operations,

16-28

Standard Data Types: List, tuples, set and
Dictionaries,

29-52

Data Type conversions 52-53

commenting in python. 54

II

Understanding Python variables, Multiple

variable declarations

55-57

Python basic statements 57
Python basic operators: Arithmetic
operators

58-60

Assignment operators, Comparison operators

Logical operators, Identity operators

Membership operators, Bitwise operators

Precedence of operators 61
Expressions. 62-65

CONTROL FLOW AND LOOPS 66-70

conditional (if)

alternative (if-else)

chained conditional (if- elif -else)

Loops: For loop using ranges, string, Use of
while loops in python

71-79

Loop manipulation using pass, continue and
break

79-84

PYTHON PROGRAMMING I YEAR/II SEM MRCET

III

Arrays: Advantages of Arrays 85-86

Creating an Array 86-88

Importing the Array Module 88

Indexing andSlicing on Arrays 89

Types of arrays 90

working with arrays using numpy 91-109

IV

Functions
Defining Your Own Functions

110

Calling Functions, passing parameters and
arguments

111-117

Python Function arguments: Keyword
Arguments, Default Arguments, Variable-
length arguments

118-124

Anonymous Functions, Powerful Lambda

functions in python
125-129

Fruitful Functions 130-131

Local and Global Scope 132-136

V

File Handling in Python: Introduction to files,

Text files and Binary files,Access Modes

137 - 138

Writing Data to a File, Reading Data from

a File, File input / output functions.

139-142

Introduction to Errors and Exceptions,
Types of Errors

143-145

Exception Handling, Handling Multiple
Exceptions.

145-146

PYTHON PROGRAMMING I YEAR/II SEM MRCET

UNIT I

Introduction to Computing – Computer Systems, Functional Units of a Computer,

Computer Languages, Language Translators, Representation of Algorithms and Flowcharts

with examples.

Introduction to Python Programming Language: Introduction to Python Language,

Features of Python, Python Installation, Python Input and Output Statements, Numeric Data

Types: int, float, boolean, complex and string and its operations, Standard Data Types: List,

Tuples, Sets and Dictionaries, Data Type conversions, Comments in Python.

Introduction to Computing:

Computer Systems:
A computer is a system made of two major components: hardware and software. The computer hardware is the

physical equipment. The software is the collection of programs (instructions) that allow the hardware to do its

job.

Computer Hardware

The hardware component of the computer system consists of five parts: input devices, central processing unit

(CPU) ,primary storage, output devices, and auxiliary storage devices.

1

Computer

System

Hardware

Software

PYTHON PROGRAMMING I YEAR/II SEM MRCET

2

The input device is usually a keyboard where programs and data are entered into the computers.

Examples of other input devices include a mouse, a pen or stylus, a touch screen, or an audio input

unit.

The central processing unit (CPU) is responsible for executing instructions such as arithmetic

calculations,comparisons among data, and movement of data inside the system. Today’s computers

may have one ,two, or more CPUs .Primary storage ,also known as main memory, is a place where

the programs and data are stored temporarily during processing. The data in primary storage are

erased when we turn off a personal computer or when we log off from a time-sharing system.

The output device is usually a monitor or a printer to show output. If the output is shown on the

monitor, we say we have a soft copy. If it is printed on the printer, we say we have a hard copy.

Auxiliary storage, also known as secondary storage, is used for both input and output. It is the place

where the programs and data are stored permanently. When we turn off the computer, or programs

and data remain in the secondary storage, ready for the next time we need them.

Computer Software

Computer software is divided in to two broad categories: system software and application software

System software manages the computer resources. It provides the interface between the hardware and

the users. Application software, on the other hand is directly responsible for helping users solve their

problems.

Fig: Types of software

PYTHON PROGRAMMING I YEAR/II SEM MRCET

3

System Software basically controls a computer’s internal functioning and also controls hardware

devices such as monitors, printers, and storage devices, etc. It is like an interface between

hardware and user applications, it helps them to communicate with each other because hardware

understands machine language (i.e. 1 or 0) whereas user applications are work in human-readable

languages like English, Hindi, German, etc. so system software converts the human-readable

language into machine language and vice versa.

Types of system software:

It has two subtypes which are:

1. Operating System: It is the main program of a computer system. When the computer

system ON it is the first software that loads into the computer’s memory. Basically, it

manages all the resources such as memory, CPU, printer, hard disk, etc., and provides

an interface to the user, which helps the user to interact with the computer system. It

also provides various services to other computer software. Examples of operating

systems are Linux, Apple macOS, Microsoft Windows, etc.

2. Language Processor: As we know that system software converts the human-readable

language into a machine language and vice versa. So, the conversion is done by the

language processor. It converts programs written in high-level programming languages

like Java, C, C++, Python, etc(known as source code), into sets of instructions that

are easily readable by machines(known as object code or machine code).

3. Device Driver: A device driver is a program or software that controls a device and

helps that device to perform its functions. Every device like a printer, mouse, modem,

etc. needs a driver to connect with the computer system eternally. So, when you

connect a new device with your computer system, first you need to install the driver of

that device so that your operating system knows how to control or manage that device.

Application software is designed to perform a specific task for end-users. It is a product or a

program that is designed only to fulfill end-users’ requirements. It includes word processors,

spreadsheets, database management, inventory, payroll programs, etc.

There are different types of application software and those are:

1. General Purpose Software: This type of application software is used for a variety of

tasks and it is not limited to performing a specific task only. For example, MS-Word,

MS-Excel, PowerPoint, etc.

2. Customized Software: This type of application software is used or designed to

perform specific tasks or functions or designed for specific organizations. For example,

railway reservation system, airline reservation system, invoice management system,

etc.

PYTHON PROGRAMMING I YEAR/II SEM MRCET

4

3. Utility Software: This type of application software is used to support the computer

infrastructure. It is designed to analyze, configure, optimize and maintains the system,

and take care of its requirements as well. For example, antivirus, disk memory tester,

disk repair, disk cleaners, disk space analyzer, etc.

Functional Units of a Computer

 Input Unit :The input unit consists of input devices that are attached to the computer.
These devices take input and convert it into binary language that the computer

understands. Some of the common input devices are keyboard, mouse, joystick,
scanner etc

PYTHON PROGRAMMING I YEAR/II SEM MRCET

5

 Central Processing Unit (CPU) : Once the information is entered into the computer by the

input device, the processor processes it. The CPU is called the brain of the computer

because it is the control center of the computer. It first fetches instructions from memory

and then interprets them so as to know what is to be done. If required, data is fetched from

memory or input device. Thereafter CPU executes or performs the required computation

and then either stores the output or displays on the output device.

 The CPU has three main components which are responsible for different functions –

Arithmetic Logic Unit (ALU), Control Unit (CU) and Memory registers

Arithmetic and Logic Unit (ALU) : The ALU, as its name suggests performs

mathematical calculations and takes logical decisions. Arithmetic calculations include
addition, subtraction, multiplication and division. Logical decisions involve comparison of

two data items to see which one is larger or smaller or equal.

Control Unit : The Control unit coordinates and controls the data flow in and out of CPU

and also controls all the operations of ALU, memory registers and also input/output units. It

is also responsible for carrying out all the instructions stored in the program. It decodes the

fetched instruction, interprets it and sends control signals to input/output devices until the

required operation is done properly by ALU and memory.

Memory Registers : A register is a temporary unit of memory in the CPU. These are used

to store the data which is directly used by the processor. Registers can be of different

sizes(16 bit, 32 bit, 64 bit and so on) and each register inside the CPU has a specific

function like storing data, storing an instruction, storing address of a location in memory

etc.

The user registers can be used by an assembly language programmer for storing operands,

intermediate results etc. Accumulator (ACC) is the main register in the ALU and contains

one of the operands of an operation to be performed in the ALU.

Memory : when a program is executed, it’s data is copied to the internal memory and is

stored in the memory till the end of the execution. The internal memory is also called the

Primary memory or Main memory. This memory is also called as RAM, i.e. Random

Access Memory.

Output Unit : The output unit consists of output devices that are attached with the

computer. It converts the binary data coming from CPU to human understandable form. The

common output devices are monitor, printer, plotter etc.

https://www.geeksforgeeks.org/types-computer-memory-ram-rom/

PYTHON PROGRAMMING I YEAR/II SEM MRCET

6

Computer Languages:

To write a program for a computer, we must use a computer language. Over the years

computer languages have evolved from machine languages to natural languages.

1940’s Machine level Languages

1950’s Symbolic Languages

1960’s High-Level Languages

Machine Languages

In the earliest days of computers, the only programming languages available were machine

languages. Each computer has its own machine language, which is made of streams of 0’s

and1’s.

Instructions in machine language must be in streams of 0’s and 1’s because the internal

circuits of a computer are made of switches transistors and other electronic devices that can

be in one of two states: off or on. The off state is represented by 0 , the on state is

represented by 1.

The only language understood by computer hardware is machine language.

Symbolic Languages:

In early 1950’s Admiral Grace Hopper, A mathematician and naval officer developed the
concept of a special computer program that would convert programs into machine

language.

The early programming languages simply mirror to the machine languages using symbols

of mnemonics to represent the various machine language instructions because they used

symbols, these languages were known as symbolic languages.

Computer does not understand symbolic language it must be translated to the machine

language. A special program called assembler translates symbolic code into machine
language. Because symbolic languages had to be assembled into machine language they

soon became known as assembly languages.

PYTHON PROGRAMMING I YEAR/II SEM MRCET

7

Symbolic language uses symbols or mnemonics to represent the various ,machine language

instructions.

High Level Languages:

Symbolic languages greatly improved programming effificiency; they still required

programmers to concentrate on the hardware that they were using. Working with symbolic

languages was also very tedious because each machine instruction has to be individually coded.

The desire to improve programmer efficiency and to change the focus from the computer to the

problem being solved led to the development of high-level language.

High level languages are portable to many different computers, allowing the programmer to

concentrate on the application problem at hand rather than the intricacies of the computer. High-

level languages are designed to relieve the programmer from the details of the assembly language.

High level languages share one thing with symbolic languages, They must be converted into

machine language. The process of converting them is known as compilation.

The first widely used high-level languages, FORTRAN (FORmula TRANslation)was created by

John Backus and an IBM team in 1957;it is still widely used today in scientific and engineering
applications. After FORTRAN was COBOL(Common Business-Oriented Language). Admiral

Hopper was played a key role in the development of the COBOL Business language.

C is a high-level language used for system software and new application code.

PYTHON PROGRAMMING I YEAR/II SEM MRCET

8

Language Translators

There are mainly three Types of translators which are used to translate different programming

languages into machine equivalent code:

1. Assembler

2. Compiler

3. Interpreter

Assembler

An assembler translates assembly language into machine code.

Assembly language consists of Mnemonics for machine Op-codes, so assemblers perform a 1:1

translation from mnemonic to a direct instruction. For example, LDA #4 converts to

0001001000100100.

Compiler

Compiler is a computer program that translates code written in a high level language to a low level

language, object/machine code.

The most common reason for translating source code is to create an executable program

(converting from high level language into machine language).

Interpreter

An interpreter is a translator, which converts High Level programs into machine code. This

process is known as interpretation. Note that the purpose of interpreter is same as that of a

compiler. Interpreter is used to convert the High Level program into computer understandable

form. Interpreter performs line-by-line execution of the source program, while compiler executes

entire program at a time.

Interpreter reads source program one line at a time, converts into machine language, executes the

line, and then proceeds to the next line. If an error occurs during execution, error must be solved

before it can proceed to the next line.

PYTHON PROGRAMMING I YEAR/II SEM MRCET

9

ALGORITHM:

Algorithms was developed by an Arab mathematician. Algorithm is a step – by – step procedure

which is helpful in solving a problem. If, it is written in English like sentences then, it is called as

‘PSEUDO CODE’.

Properties of an Algorithm

An algorithm must possess the following five properties −

 Input

 Output

 Finiteness

 Definiteness

 Effectiveness

Example: Algorithm/pseudo code to add two numbers

Step 1: Start

Step 2: Read the two numbers in to a, b

Step 3: c=a+b

Step 4: write/print c

Step 5: Stop.

FLOW CHART:

A Flow chart is a Graphical representation of an Algorithm or a portion of an Algorithm. Flow

charts are drawn using certain special purpose symbols such as Rectangles, Diamonds, Ovals and

small circles. These symbols are connected by arrows called flow lines.

(or)

The diagrammatic representation of way to solve the given problem is called flow chart.

PYTHON PROGRAMMING I YEAR/II SEM MRCET

10

Example: Flowchart to add two numbers

PYTHON PROGRAMMING I YEAR/II SEM MRCET

11

Introduction to Python and installation:

Python is a widely used general-purpose, high level programming language. It was initially

designed by Guido van Rossum in 1991 and developed by Python Software Foundation. It

was mainly developed for emphasis on code readability, and its syntax allows programmers

to express concepts in fewer lines of code.

Python is a programming language that lets you work quickly and integrate systems more

efficiently.

There are two major Python versions- Python 2 and Python 3.

• On 16 October 2000, Python 2.0 was released with many new features.

• On 3rd December 2008, Python 3.0 was released with more testing and includes new

features.

Beginning with Python programming:

1) Finding an Interpreter:

Before we start Python programming, we need to have an interpreter to interpret and run our

programs. There are certain online interpreters like https://ide.geeksforgeeks.org/,

http://ideone.com/ or http://codepad.org/ that can be used to start Python without installing

an interpreter.

Windows: There are many interpreters available freely to run Python scripts like IDLE

(Integrated Development Environment) which is installed when you install the python

software from http://python.org/downloads/

2) Writing first program:

Script Begins

Statement1

https://www.geeksforgeeks.org/python-programming-language/
https://ide.geeksforgeeks.org/
http://ideone.com/
http://codepad.org/
http://python.org/

PYTHON PROGRAMMING I YEAR/II SEM MRCET

12

Statement2

Statement3

Script Ends

Differences between scripting language and programming language:

Why to use Python:

The following are the primary factors to use python in day-to-day life:

1. Python is object-oriented

Structure supports such concepts as polymorphism, operation overloading and

multiple inheritance.

2. Indentation

Indentation is one of the greatest feature in python

PYTHON PROGRAMMING I YEAR/II SEM MRCET

13

3. It’s free (open source)

Downloading python and installing python is free and easy

4. It’s Powerful

 Dynamic typing

 Built-in types and tools

 Library utilities

 Third party utilities (e.g. Numeric, NumPy, sciPy)

 Automatic memory management

5. It’s Portable

 Python runs virtually every major platform used today

 As long as you have a compaitable python interpreter installed, python

programs will run in exactly the same manner, irrespective of platform.

6. It’s easy to use and learn

 No intermediate compile

 Python Programs are compiled automatically to an intermediate form called

byte code, which the interpreter then reads.

 This gives python the development speed of an interpreter without the

performance loss inherent in purely interpreted languages.

 Structure and syntax are pretty intuitive and easy to grasp.

4. Interpreted Language

Python is processed at runtime by python Interpreter

8. Interactive Programming Language

Users can interact with the python interpreter directly for writing the programs

9. Straight forward syntax

The formation of python syntax is simple and straight forward which also makes it

popular.

Installation:

There are many interpreters available freely to run Python scripts like IDLE (Integrated

Development Environment) which is installed when you install the

from http://python.org/downloads/

Steps to be followed and remembered:

Step 1: Select Version of Python to Install.

Step 2: Download Python Executable Installer.

Step 3: Run Executable Installer.

Step 4: Verify Python Was Installed On Windows.

python software

http://python.org/downloads/

PYTHON PROGRAMMING I YEAR/II SEM MRCET

14

Step 5: Verify Pip Was Installed.

Step 6: Add Python Path to Environment Variables (Optional)

Working with Python

Python Code Execution:

Python’s traditional runtime execution model:Source code you type is translated to byte

code, which is then run by the Python Virtual Machine (PVM). Your code is automatically

compiled, but then it is interpreted.

Source Byte code Runtime

m.py m.pyc

Source code extension is .py

Byte code extension is .pyc (Compiled python code)

There are two modes for using the Python interpreter:

• Interactive Mode

• Script Mode

PVM

PYTHON PROGRAMMING I YEAR/II SEM MRCET

15

Running Python in interactive mode:

Without passing python script file to the interpreter, directly execute code to Python

prompt.Once you‟re inside the python interpreter, then you can start.

>>> print("hello world")

hello world

Relevant output is displayed on subsequent lines without the >>> symbol

>>> x=[0,1,2]

Quantities stored in memory are not displayed by default.

>>> x

#If a quantity is stored in memory, typing its name will display it.

[0, 1, 2]

>>> 2+3

5

The chevron at the beginning of the 1st line, i.e., the symbol >>> is a prompt the python

interpreter uses to indicate that it is ready. If the programmer types 2+6, the interpreter

replies 8.

Running Python in script mode:

PYTHON PROGRAMMING I YEAR/II SEM MRCET

16

Alternatively, programmers can store Python script source code in a file with

the .py extension, and use the interpreter to execute the contents of the file. To execute the

script by the interpreter, you have to tell the interpreter the name of the file. For example, if

you have a script name MyFile.py and you're working on Unix, to run the script you have to

type:

python MyFile.py

Working with the interactive mode is better when Python programmers deal with small

pieces of code as you can type and execute them immediately, but when the code is more

than 2-4 lines, using the script for coding can help to modify and use the code in future.

Example:

Numeric Data types:

The data stored in memory can be of many types. For example, a student roll number is

stored as a numeric value and his or her address is stored as alphanumeric characters. Python

has various standard data types that are used to define the operations possible on them and

the storage method for each of them.

Int:

Int, or integer, is a whole number, positive or negative,

length.

>>> print(24656354687654+2)

24656354687656

>>> print(20)

20

>>> print(0b10)

without decimals, of unlimited

PYTHON PROGRAMMING I YEAR/II SEM MRCET

17

2

>>> print(0B10)

2

>>> print(0X20)

32

>>> 20

20

>>> 0b10

2

>>> a=10

>>> print(a)

10

To verify the type of any object in Python, use the type() function:

>>> type(10)

<class 'int'>

>>> a=11

>>> print(type(a))

<class 'int'>

Float:

Float, or "floating point number" is a number, positive or negative, containing one or more

decimals.

Float can also be scientific numbers with an "e" to indicate the power of 10.

>>> y=2.8

>>> y

2.8

>>> y=2.8

>>> print(type(y))

<class 'float'>

>>> type(.4)

<class 'float'>

PYTHON PROGRAMMING I YEAR/II SEM MRCET

18

>>> 2.

2.0

Example:

x = 35e3

y = 12E4

z = -87.7e100

print(type(x))

print(type(y))

print(type(z))

Output:

<class 'float'>

<class 'float'>

<class 'float'>

Boolean:

Objects of Boolean type may have one of two values, True or False:

>>> type(True)

<class 'bool'>

>>> type(False)

<class 'bool'>

String:

1. Strings in Python are identified as a contiguous set of characters represented in the

quotation marks. Python allows for either pairs of single or double quotes.

• 'hello' is the same as "hello".

• Strings can be output to screen using the print function. For example: print("hello").

>>> print("mrcet college")

mrcet college

>>> type("mrcet college")

PYTHON PROGRAMMING I YEAR/II SEM MRCET

17

<class 'str'>

>>> print('mrcet college')

mrcet college

>>> " "

' '

A string is a group/a sequence of characters. Since Python has no provision for arrays,

we simply use strings. This is how we declare a string. We can use a pair of single or

double quotes. Every string object is of the type „str‟.

>>> type("name")

<class 'str'>

>>> name=str()

>>> name

''
>>> a=str('mrcet')

>>> a

'mrcet'

>>> a=str(mrcet)

>>> a[2]

'c'

>>> fruit = 'banana'

>>> letter = fruit[1]

The second statement selects character number 1 from fruit and assigns it to letter. The

expression in brackets is called an index. The index indicates which character in the

sequence we want

String slices:

Asegment of a string is called a slice. Selecting a slice is similar to selecting a character:

Subsets of strings can be taken using the slice operator ([] and [:]) with indexes starting at 0

in the beginning of the string and working their way from -1 at the end.

Slice out substrings, sub lists, sub Tuples using index.

Syntax:[Start: stop: steps]

 Slicing will start from index and will go up to stop in step of steps.

 Default value of start is 0,

PYTHON PROGRAMMING I YEAR/II SEM MRCET

20

 Stop is last index of list

 And for step default is 1

For example 1−

str = 'Hello World!'

print str # Prints complete string

print str[0] # Prints first character of the string

print str[2:5] # Prints characters starting from 3rd to 5th

print str[2:] # Prints string starting from 3rd character print

str * 2 # Prints string two times

print str + "TEST" # Prints concatenated string

Output:

Hello World!

H

llo

llo World!

Hello World!Hello World!

Hello World!TEST

Example 2:

>>> x='computer'

>>> x[1:4]

'omp'

>>> x[1:6:2]

'opt'

>>> x[3:]

PYTHON PROGRAMMING I YEAR/II SEM MRCET

21

'puter'

>>> x[:5]

'compu'

>>> x[-1]

'r'

>>> x[-3:]

'ter'

>>> x[:-2]

'comput'

>>> x[::-2]

'rtpo'

>>> x[::-1]

'retupmoc'

Immutability:

It is tempting to use the [] operator on the left side of an assignment, with the intention of

changing a character in a string.

For example:

>>> greeting='mrcet college!'

>>> greeting[0]='n'

TypeError: 'str' object does not support item assignment

The reason for the error is that strings are immutable, which means we can‟t change an

existing string. The best we can do is creating a new string that is a variation on the original:

>>> greeting = 'Hello, world!'

>>>new_greeting = 'J' + greeting[1:]

>>>new_greeting

'Jello, world!'

Note: The plus (+) sign is the string concatenation operator and the asterisk (*) is the

repetition operator

PYTHON PROGRAMMING I YEAR/II SEM MRCET

22

String functions and methods:

There are many methods to operate on String.

S.no Method name Description

1. isalnum() Returns true if string has at least 1 character and all
characters are alphanumeric and false otherwise.

2. isalpha() Returns true if string has at least 1 character and all
characters are alphabetic and false otherwise.

3. isdigit() Returns true if string contains only digits and false
otherwise.

4. islower() Returns true if string has at least 1 cased character and all cased
characters are in lowercase and false
otherwise.

5. isnumeric() Returns true if a string contains only numeric
characters and false otherwise.

6. isspace() Returns true if string contains only whitespace
characters and false otherwise.

7. istitle() Returns true if string is properly “titlecased” and
false otherwise.

8. isupper() Returns true if string has at least one cased character and all

cased characters are in uppercase
and false otherwise.

9. replace(old, new
[, max])

Replaces all occurrences of old in string with new
or at most max occurrences if max given.

10. split() Splits string according to delimiter str (space if not
provided) and returns list of substrings;

11. count() Occurrence of a string in another string

12. find() Finding the index of the first occurrence of a string
in another string

13. swapcase() Converts lowercase letters in a string to uppercase
and viceversa

14. startswith(str,

beg=0,end=le

n(string))

Determines if string or a substring of string (if starting index

beg and ending index end are given) starts with substring str;

returns true if so and false
otherwise.

Note:

All the string methods will be returning either true or false as the result

1. isalnum():

PYTHON PROGRAMMING I YEAR/II SEM MRCET

Syntax: 23

Isalnum() method returns true if string has at least 1 character and all characters are

alphanumeric and false otherwise.

Syntax:

String.isalnum()

Example:

>>> string="123alpha"

>>>string.isalnum() True

2. isalpha():

isalpha() method returns true if string has at least 1 character and all characters are

alphabetic and false otherwise.

Syntax:

String.isalpha()

Example:

>>> string="nikhil"

>>>string.isalpha()

True

3. isdigit():

isdigit() returns true if string contains only digits and false otherwise.

Syntax:

String.isdigit()

Example:

>>> string="123456789"

>>>string.isdigit()

True

4. islower():

Islower() returns true if string has characters that are in lowercase and false otherwise.

PYTHON PROGRAMMING I YEAR/II SEM MRCET

24

String.islower()

Example:

>>> string="nikhil"

>>>string.islower()

True

5. isnumeric():

isnumeric() method returns true if a string contains only numeric characters and false

otherwise.

Syntax:

String.isnumeric()

Example:

>>> string="123456789"

>>>string.isnumeric()

True

6. isspace():

isspace() returns true if string contains only whitespace characters and false otherwise.

Syntax:

String.isspace()

Example:

>>> string=" "

>>>string.isspace()

True

7. istitle()

istitle() method returns true if string is properly “titlecased”(starting letter of each word is

capital) and false otherwise

Syntax:

String.istitle()

PYTHON PROGRAMMING I YEAR/II SEM MRCET

Example:

>>> string="Nikhil Is Learning"

>>>string.istitle()

True

8. isupper()

isupper() returns true if string has characters that are in uppercase and false otherwise.

Syntax:

String.isupper()

Example:

>>> string="HELLO"

>>>string.isupper()

True

9. replace()

replace() method replaces all occurrences of old in string with new or at most max

occurrences if max given.

Syntax:

String.replace()

Example:

>>> string="Nikhil Is Learning"

>>>string.replace('Nikhil','Neha')

'Neha Is Learning'

10. split()

split() method splits the string according to delimiter str (space if not provided)

Syntax:

String.split()

Example:

>>> string="Nikhil Is Learning"

>>>string.split() 25

PYTHON PROGRAMMING I YEAR/II SEM MRCET

26

['Nikhil', 'Is', 'Learning']

11. count()

count() method counts the occurrence of a string in another string Syntax:

String.count()

Example:

>>> string='Nikhil Is Learning'

>>>string.count('i')

3

12. find()

Find() method is used for finding the index of the first occurrence of a string in another

string

Syntax:

String.find(„string‟)

Example:

>>> string="Nikhil Is Learning"

>>>string.find('k')

2

13. swapcase()

converts lowercase letters in a string to uppercase and viceversa

Syntax:

String.find(„string‟)

Example:

>>> string="HELLO"

>>>string.swapcase()

'hello'

14. startswith()

Determines if string or a substring of string (if starting index beg and ending index end are

given) starts with substring str; returns true if so and false otherwise.

PYTHON PROGRAMMING I YEAR/II SEM MRCET

27

Syntax:

String.startswith(„string‟)

Example:

>>> string="Nikhil Is Learning"

>>>string.startswith('N')

True

15. endswith()

Determines if string or a substring of string (if starting index beg and ending index end are

given) ends with substring str; returns true if so and false otherwise.

Syntax:

String.endswith(„string‟)

Example:

>>> string="Nikhil Is Learning"

>>>string.startswith('g')

True

If you want to include either type of quote character within the string, the simplest way is to

delimit the string with the other type. If a string is to contain a single quote, delimit it with

double quotes and vice versa:

>>> print("mrcet is an autonomous (') college")

mrcet is an autonomous (') college

>>> print('mrcet is an autonomous (") college')

mrcet is an autonomous (") college

Suppressing Special Character:

Specifying a backslash (\) in front of the quote character in a string “escapes” it and causes

Python to suppress its usual special meaning. It is then interpreted simply as a literal single

quote character:

>>> print("mrcet is an autonomous (\') college")

PYTHON PROGRAMMING I YEAR/II SEM MRCET

28

mrcet is an autonomous (') college

>>> print('mrcet is an autonomous (\") college')

mrcet is an autonomous (") college

The following is a table of escape sequences which cause Python to suppress the usual

special interpretation of a character in a string:

>>> print('a\

....b')

a. .. b

>>> print('a\

b\

c')

abc

>>> print('a \n b')

a

b

>>> print("mrcet \n college")

mrcet

college

Escape

Sequence

Usual Interpretation of

Character(s) After Backslash

“Escaped” Interpretation

\' Terminates string with single quote opening delimiter Literal single quote (') character

\" Terminates string with double quote opening delimiter Literal double quote (") character

\newline Terminates input line Newline is ignored

\\ Introduces escape sequence Literal backslash (\) character

In Python (and almost all other common computer languages), a tab character can be

specified by the escape sequence \t:

>>> print("a\tb")

a b

PYTHON PROGRAMMING I YEAR/II SEM MRCET

29

Standard Data types:

List:

 It is a general purpose most widely used in data structures

 List is a collection which is ordered and changeable and allows duplicate members.

(Grow and shrink as needed, sequence type,sortable).

 To use a list, you must declare it first. Do this using square brackets and separate

values with commas.

 We can construct / create list in many ways.

Ex:

>>> list1=[1,2,3,'A','B',7,8,[10,11]]

>>> print(list1)

[1, 2, 3, 'A', 'B', 7, 8, [10, 11]]

>>> x=list()

>>> x

[]

>>> tuple1=(1,2,3,4)

>>> x=list(tuple1)

>>> x

[1, 2, 3, 4]

List operations:

These operations include

membership

Basic List Operations:

indexing, slicing, adding, multiplying, and checking for

Lists respond to the + and * operators much like strings; they mean concatenation and

repetition here too, except that the result is a new list, not a string.

PYTHON PROGRAMMING I YEAR/II SEM MRCET

30

Python Expression Results Description

len([1, 2, 3]) 3 Length

[1, 2, 3] + [4, 5, 6] [1, 2, 3, 4, 5, 6] Concatenation

['Hi!'] * 4 ['Hi!', 'Hi!', 'Hi!', 'Hi!'] Repetition

3 in [1, 2, 3] True Membership

for x in [1, 2, 3]: print x, 1 2 3 Iteration

Indexing, Slicing, and Matrixes

Because lists are sequences, indexing and slicing work the same way for lists as they do for

strings.

Assuming following input −

L= ['mrcet', 'college', 'MRCET!']

Python Expression Results Description

L[2] MRCET Offsets start at zero

L[-2] college Negative: count from the right

L[1:] ['college', 'MRCET!'] Slicing fetches sections

List slices:

>>> list1=range(1,6)

PYTHON PROGRAMMING I YEAR/II SEM MRCET

31

>>> list1

range(1, 6)

>>> print(list1)

range(1, 6)

>>> list1=[1,2,3,4,5,6,7,8,9,10]

>>> list1[1:]

[2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> list1[:1]

[1]

>>> list1[2:5]

[3, 4, 5]

>>> list1[:6]

[1, 2, 3, 4, 5, 6]

>>> list1[1:2:4]

[2]

>>> list1[1:8:2]

[2, 4, 6, 8]

List methods:

The list data type has some more methods. Here are all of the methods of list objects:

 Del()

 Append()

 Extend()

 Insert()

 Pop()

 Remove()

 Reverse()

 Sort()

Delete:Delete a list or an item from a list

>>> x=[5,3,8,6]

PYTHON PROGRAMMING I YEAR/II SEM MRCET

32

>>> del(x[1])

>>> x

[5, 8, 6]

#deletes the index position 1 in a list

>>> del(x)

>>> x # complete list gets deleted

Append: Append an item to a list

>>> x=[1,5,8,4]

>>>x.append(10)

>>> x

[1, 5, 8, 4, 10]

Extend: Append a sequence to a list.

>>> x=[1,2,3,4]

>>> y=[3,6,9,1]

>>>x.extend(y)

>>> x

[1, 2, 3, 4, 3, 6, 9, 1]

Insert:To add an item at the specified index, use the insert () method:

>>> x=[1,2,4,6,7]

>>>x.insert(2,10) #insert(index no, item to be inserted)

>>> x

[1, 2, 10, 4, 6, 7]

>>>x.insert(4,['a',11])

>>> x

PYTHON PROGRAMMING I YEAR/II SEM MRCET

33

[1, 2, 10, 4, ['a', 11], 6, 7]

Pop:The pop() method removes the specified index, (or the last item if index is not

specified) or simply pops the last item of list and returns the item.

>>> x=[1, 2, 10, 4, 6, 7]

>>>x.pop()

7

>>> x

[1, 2, 10, 4, 6]

>>> x=[1, 2, 10, 4, 6]

>>>x.pop(2)

10

>>> x

[1, 2, 4, 6]

Remove:The remove() method removes the specified item from a given list.

>>> x=[1,33,2,10,4,6]

>>>x.remove(33)

>>> x

[1, 2, 10, 4, 6]

>>>x.remove(4)

>>> x

[1, 2, 10, 6]

Reverse: Reverse the order of a given list.

>>> x=[1,2,3,4,5,6,7]

PYTHON PROGRAMMING I YEAR/II SEM MRCET

34

>>>x.reverse()

>>> x

[7, 6, 5, 4, 3, 2, 1]

Sort: Sorts the elements in ascending order

>>> x=[7, 6, 5, 4, 3, 2, 1]

>>>x.sort()

>>> x

[1, 2, 3, 4, 5, 6, 7]

>>> x=[10,1,5,3,8,7]

>>>x.sort()

>>> x

[1, 3, 5, 7, 8, 10]

List loop:

Loops are control structures used to repeat a given section of code a certain number of times

or until a particular condition is met.

Method #1: For loop

#list of items

list = ['M','R','C','E','T']

i = 1

#Iterating over the list
for item in list:
print ('college ',i,' is ',item)

i = i+1

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/lis.py

college 1 is M

PYTHON PROGRAMMING I YEAR/II SEM MRCET

35

college 2 is R

college 3 is C

college 4 is E

college 5 is T

Method #2: For loop and range()

In case we want to use the traditional for loop which iterates from number x to number y.

Python3 code to iterate over a list

list = [1, 3, 5, 7, 9]

getting length of list

length = len(list)

Iterating the index

same as 'for i in range(len(list))'

for i in range(length):

print(list[i])

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/listlooop.py

1
3
5

7

9

Method #3: using while loop

Python3 code to iterate over a list

list = [1, 3, 5, 7, 9]

Getting length of list

length = len(list)

i = 0

Iterating using while loop

while i< length:
print(list[i])

i += 1

Mutability:

PYTHON PROGRAMMING I YEAR/II SEM MRCET

36

A mutable object can be changed after it is created, and an immutable object can't.

Append: Append an item to a list

>>> x=[1,5,8,4]

>>>x.append(10)

>>> x

[1, 5, 8, 4, 10]

Extend: Append a sequence to a list.

>>> x=[1,2,3,4]

>>> y=[3,6,9,1]

>>>x.extend(y)

>>> x

Delete:Delete a list or an item from a list

>>> x=[5,3,8,6]

>>> del(x[1])

>>> x

[5, 8, 6]

#deletes the index position 1 in a list

Insert:To add an item at the specified index, use the insert () method:

>>> x=[1,2,4,6,7]

>>>x.insert(2,10) #insert(index no, item to be inserted)

>>> x

[1, 2, 10, 4, 6, 7]

>>>x.insert(4,['a',11])

>>> x

[1, 2, 10, 4, ['a', 11], 6, 7]

PYTHON PROGRAMMING I YEAR/II SEM MRCET

37

Pop:The pop() method removes the specified index, (or the last item if index is not

specified) or simply pops the last item of list and returns the item.

>>> x=[1, 2, 10, 4, 6, 7]

>>>x.pop()

7

>>> x

[1, 2, 10, 4, 6]

>>> x=[1, 2, 10, 4, 6]

>>>x.pop(2)

10

>>> x

[1, 2, 4, 6]

Remove:The remove() method removes the specified item from a given list.

>>> x=[1,33,2,10,4,6]

>>>x.remove(33)

>>> x

[1, 2, 10, 4, 6]

>>>x.remove(4)

>>> x

[1, 2, 10, 6]

Reverse: Reverse the order of a given list.

>>> x=[1,2,3,4,5,6,7]

>>>x.reverse()

PYTHON PROGRAMMING I YEAR/II SEM MRCET

38

>>> x

[7, 6, 5, 4, 3, 2, 1]

Sort: Sorts the elements in ascending order

>>> x=[7, 6, 5, 4, 3, 2, 1]

>>>x.sort()

>>> x

[1, 2, 3, 4, 5, 6, 7]

>>> x=[10,1,5,3,8,7]

>>>x.sort()

>>> x

[1, 3, 5, 7, 8, 10]

Aliasing:

1. An alias is a second name for a piece of data, often easier (and more useful) than

making a copy.

2. If the data is immutable, aliases don‟t matter because the data can‟t change.

3. But if data can change, aliases can result in lot of hard – to – find bugs.

4. Aliasing happens whenever one variable‟s value is assigned to another variable.

For ex:

a = [81, 82, 83]

b = [81, 82, 83]

print(a == b)

print(a is b)

b = a

print(a == b)

print(a is b)
b[0] = 5

print(a)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/alia.py

PYTHON PROGRAMMING I YEAR/II SEM MRCET

39

True

False

True

True

[5, 82, 83]

Because the same list has two different names, a and b, we say that it is aliased. Changes

made with one alias affect the other. In the example above, you can see that a and b refer to

the same list after executing the assignment statement b = a.

Cloning Lists:

If we want to modify a list and also keep a copy of the original, we need to be able to make a

copy of the list itself, not just the reference. This process is sometimes called cloning, to

avoid the ambiguity of the word copy.

The easiest way to clone a list is to use the slice operator.Taking any slice of a creates a new

list. In this case the slice happens to consist of the whole list.

Example:

a = [81, 82, 83]

b = a[:] # make a clone using slice

print(a == b)

print(a is b)

b[0] = 5

print(a)

print(b)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/clo.py

True
False

[81, 82, 83]

[5, 82, 83]

Now we are free to make changes to b without worrying about a

PYTHON PROGRAMMING I YEAR/II SEM MRCET

40

List parameters:

Passing a list as an argument actually passes a reference to the list, not a copy of the list.

Since lists are mutable, changes made to the elements referenced by the parameter change

the same list that the argument is referencing.

#for example, the function below takes a list as an argument and multiplies each element in

the list by 2:

def doubleStuff(List):

""" Overwrite each element in aList with double its value. """

for position in range(len(List)):

List[position] = 2 * List[position]

things = [2, 5, 9]

print(things)

doubleStuff(things)

print(things)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/lipar.py ==

[2, 5, 9]

[4, 10, 18]

Tuple:

A tuple is a collection which is ordered and unchangeable. In Python tuples are written

with round brackets.

 Supports all operations for sequences.

 Immutable, but member objects may be mutable.

 If the contents of a list shouldn‟t change, use a tuple to prevent items from

accidently being added, changed, or deleted.

PYTHON PROGRAMMING I YEAR/II SEM MRCET

41

 Tuples are more efficient than list due to python‟s implementation.

We can construct tuple in many ways:

X=() #no item tuple

X=(1,2,3)

X=tuple(list1)

X=1,2,3,4

Example:

>>> x=(1,2,3)

>>> print(x)

(1, 2, 3)

>>> x

(1, 2, 3)

>>> x=()

>>> x

()

>>> x=[4,5,66,9]

>>> y=tuple(x)

>>> y

(4, 5, 66, 9)

>>> x=1,2,3,4

>>> x

(1, 2, 3, 4)

Some of the operations of tuple are:

 Access tuple items

 Change tuple items

 Loop through a tuple

 Count()

 Index()

 Length()

Access tuple items:Access tuple items by referring to the index number, inside square

PYTHON PROGRAMMING I YEAR/II SEM MRCET

40

brackets

>>> x=('a','b','c','g')

>>> print(x[2])

c

Change tuple items:Once a tuple is created, you cannot change its values. Tuples

are unchangeable.

>>> x=(2,5,7,'4',8)

>>> x[1]=10

Traceback (most recent call last):

File "<pyshell#41>", line 1, in <module>

x[1]=10

TypeError: 'tuple' object does not support item assignment

>>> x

(2, 5, 7, '4', 8) # the value is still the same

Loop through a tuple:We can loop the values of tuple using for loop

>>> x=4,5,6,7,2,'aa'

>>> for i in x:

print(i)

4

5

6

7

2

aa

Count ():Returns the number of times a specified value occurs in a tuple

>>> x=(1,2,3,4,5,6,2,10,2,11,12,2)

>>>x.count(2)

4

Index (): Searches the tuple for a specified value and returns the position of where it

was found

>>> x=(1,2,3,4,5,6,2,10,2,11,12,2)

>>>x.index(2)

PYTHON PROGRAMMING I YEAR/II SEM MRCET

43

1

(Or)

>>> x=(1,2,3,4,5,6,2,10,2,11,12,2)

>>> y=x.index(2)

>>> print(y)

1

Length (): To know the number of items or values present in a tuple, we use len().

>>> x=(1,2,3,4,5,6,2,10,2,11,12,2)

>>> y=len(x)

>>> print(y)

12

Tuple Assignment

Python has tuple assignment feature which enables you to assign more than one variable at a

time. In here, we have assigned tuple 1 with the college information like college name, year,

etc. and another tuple 2 with the values in it like number (1, 2, 3… 7).

For Example,

Here is the code,

 >>> tup1 = ('mrcet', 'eng college','2004','cse', 'it','csit');

 >>> tup2 = (1,2,3,4,5,6,7);

 >>> print(tup1[0])

 mrcet

 >>> print(tup2[1:4])

 (2, 3, 4)

Tuple 1 includes list of information of mrcet

Tuple 2 includes list of numbers in it

We call the value for [0] in tuple and for tuple 2 we call the value between 1 and 4

PYTHON PROGRAMMING I YEAR/II SEM MRCET
Run the above code- It gives name mrcet for first tuple while for second tuple it gives

44

number (2, 3, 4)

Tuple as return values:

ATuple is a comma separated sequence of items. It is created with or without (). Tuples are

immutable.

APython program to return multiple values from a method using tuple

This function returns a tuple

def fun():

str = "mrcet college"

x = 20

return str, x; # Return tuple, we could also

write (str, x)

Driver code to test above method

str, x = fun() # Assign returned tuple

print(str)
print(x)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/tupretval.py

mrcet college

20

Functions can return tuples as return values.

def circleInfo(r):

""" Return (circumference, area) of a circle of radius r """

c = 2 * 3.14159 * r

a = 3.14159 * r * r

return (c, a)

print(circleInfo(10))

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/functupretval.py

(62.8318, 314.159)

PYTHON PROGRAMMING
def f(x):

I YEAR/II SEM MRCET

45

y0 = x + 1

y1 = x * 3

y2 = y0 ** y3

return (y0, y1, y2)

Tuple methods:

Count ():Returns the number of times a specified value occurs in a tuple

>>> x=(1,2,3,4,5,6,2,10,2,11,12,2)

>>>x.count(2)

4

Index (): Searches the tuple for a specified value and returns the position of where it

was found

>>> x=(1,2,3,4,5,6,2,10,2,11,12,2)

>>>x.index(2)

1

(Or)

>>> x=(1,2,3,4,5,6,2,10,2,11,12,2)

>>> y=x.index(2)

>>> print(y)

1

Set:

A set is a collection which is unordered and unindexed with no duplicate elements. In

Python sets are written with curly brackets.

 To create an empty set we use set()

 Curly braces „{}‟ or the set() function can be used to create sets

We can construct tuple in many ways:

X=set()

X={3,5,6,8}

X=set(list1)

https://docs.python.org/3/library/stdtypes.html#set

46

PYTHON PROGRAMMING I YEAR/II SEM MRCET
Example:
>>> x={1,3,5,6}

>>> x

{1, 3, 5, 6}

>>> x=set()

>>> x

set()

>>> list1=[4,6,"dd",7]

>>> x=set(list1)

>>> x

{4, 'dd', 6, 7}

 We cannot access items in a set by referring to an index, since sets are unordered

the items has no index.

 But you can loop through the set items using a for loop, or ask if a specified value
is present in a set, by using the in keyword.

Some of the basic set operations are:

 Add()

 Remove()

 Len()

 Item in x

 Pop

 Clear

Add ():To add one item to a set use the add() method.To add more than one item to a set
use the update() method.

>>> x={"mrcet","college","cse","dept"}

>>>x.add("autonomous")

>>> x

{'mrcet', 'dept', 'autonomous', 'cse', 'college'}

>>> x={1,2,3}

>>>x.update("a","b")

>>> x

{1, 2, 3, 'a', 'b'}

PYTHON PROGRAMMING I YEAR/II SEM MRCET

47

>>> x={1,2,3}

>>>x.update([4,5],[6,7,8])

>>> x

{1, 2, 3, 4, 5, 6, 7, 8}

Remove (): To remove an item from the set we use remove or discard methods.

>>> x={1, 2, 3, 'a', 'b'}

>>>x.remove(3)

>>> x

{1, 2, 'a', 'b'}

Len (): To know the number of items present in a set, we use len().

>>> z={'mrcet', 'dept', 'autonomous', 'cse', 'college'}

>>>len(z)

5

Item in X:you can loop through the set items using a for loop.

>>> x={'a','b','c','d'}

>>> for item in x:

print(item)

c

d

a

b

pop ():This method is used to remove an item, but this method will remove the last item.

Remember that sets are unordered, so you will not know what item that gets removed.

>>> x={1, 2, 3, 4, 5, 6, 7, 8}

>>>x.pop()

1

>>> x

{2, 3, 4, 5, 6, 7, 8}

Clear (): This method will the set as empty.

>>> x={2, 3, 4, 5, 6, 7, 8}

>>>x.clear()

>>> x

set()

The set also consist of some mathematical operations like:

MRCET

48

PYTHON PROGRAMMING

I YEAR/II SEM

&

Union OR |

Symmetric Diff XOR ^

Diff

Subset

Superset

Some examples:

In set1 but not in set2

set2 contains set1

set1 contains set2

set1-set2

set1<=set2

set1>=set2

>>> x={1,2,3,4}
>>> y={4,5,6,7}

>>> print(x|y)

{1, 2, 3, 4, 5, 6, 7}

>>> x={1,2,3,4}

>>> y={4,5,6,7}

>>> print(x&y)

{4}

>>> A = {1, 2, 3, 4, 5}

>>> B = {4, 5, 6, 7, 8}

>>> print(A-B)

{1, 2, 3}

>>> B = {4, 5, 6, 7, 8}

>>> A = {1, 2, 3, 4, 5}
>>> print(B^A)
{1, 2, 3, 6, 7, 8}

Dictionaries:

A dictionary is a collection which is unordered, changeable and indexed. In Python

dictionaries are written with curly brackets, and they have keys and values.

 Key-value pairs

 Unordered

We can construct or create dictionary like:

X={1:‟A‟,2:‟B‟,3:‟c‟}

X=dict([(„a‟,3) („b‟,4)]

X=dict(„A‟=1,‟B‟ =2)

Examples:

PYTHON PROGRAMMING I YEAR/II SEM MRCET

49

>>> dict1 = {"brand":"mrcet","model":"college","year":2004}
>>> dict1

{'brand': 'mrcet', 'model': 'college', 'year': 2004}

To access specific value of a dictionary, we must pass its key,

>>> dict1 = {"brand":"mrcet","model":"college","year":2004}

>>> x=dict1["brand"]

>>> x

'mrcet'

To access keys and values and items of dictionary:

>>> dict1 = {"brand":"mrcet","model":"college","year":2004}
>>> dict1.keys()

dict_keys(['brand', 'model', 'year'])

>>> dict1.values()

dict_values(['mrcet', 'college', 2004])

>>> dict1.items()

dict_items([('brand', 'mrcet'), ('model', 'college'), ('year', 2004)])

>>> for items in dict1.values():

print(items)

mrcet

college

2004

>>> for items in dict1.keys():

print(items)

brand

model

year

>>> for i in dict1.items():

print(i)

('brand', 'mrcet')

('model', 'college')

PYTHON PROGRAMMING I YEAR/II SEM MRCET

50

('year', 2004)

Some of the operations are:

 Add/change

 Remove

 Length

 Delete

Add/change values:You can change the value of a specific item by referring to its key

name

>>> dict1 = {"brand":"mrcet","model":"college","year":2004}

>>> dict1["year"]=2005

>>> dict1

{'brand': 'mrcet', 'model': 'college', 'year': 2005}

Remove(): It removes or pop the specific item of dictionary.

>>> dict1 = {"brand":"mrcet","model":"college","year":2004}
>>> print(dict1.pop("model"))

college

>>> dict1

{'brand': 'mrcet', 'year': 2005}

Delete:Deletes a particular item.

>>> x = {1:1, 2:4, 3:9, 4:16, 5:25}

>>> del x[5]

>>> x

Length:we use len() method to get the length of dictionary.

>>>{1: 1, 2: 4, 3: 9, 4: 16}

{1: 1, 2: 4, 3: 9, 4: 16}

>>> y=len(x)

>>> y

4

Iterating over (key, value) pairs:

>>> x = {1:1, 2:4, 3:9, 4:16, 5:25}

>>> for key in x:

print(key, x[key])

PYTHON PROGRAMMING I YEAR/II SEM MRCET

51

1 1

2 4

3 9

4 16

5 25

>>> for k,v in x.items():

print(k,v)

1 1

2 4

3 9

4 16

5 25

List of Dictionaries:

>>> customers = [{"uid":1,"name":"John"},

{"uid":2,"name":"Smith"},

{"uid":3,"name":"Andersson"},

]

>>>>>> print(customers)

[{'uid': 1, 'name': 'John'}, {'uid': 2, 'name': 'Smith'}, {'uid': 3, 'name': 'Andersson'}]

Print the uid and name of each customer

>>> for x in customers:
print(x["uid"], x["name"])

1 John

2 Smith

3 Andersson

##Modify an entry, This will change the name of customer 2 from Smith to Charlie

>>> customers[2]["name"]="charlie"

>>> print(customers)

[{'uid': 1, 'name': 'John'}, {'uid': 2, 'name': 'Smith'}, {'uid': 3, 'name': 'charlie'}]

##Add a new field to each entry

>>> for x in customers:

PYTHON PROGRAMMING I YEAR/II SEM MRCET

52

x["password"]="123456" # any initial value

>>> print(customers)

[{'uid': 1, 'name': 'John', 'password': '123456'}, {'uid': 2, 'name': 'Smith', 'password':

'123456'}, {'uid': 3, 'name': 'charlie', 'password': '123456'}]

##Delete a field

>>> del customers[1]

>>> print(customers)

[{'uid': 1, 'name': 'John', 'password': '123456'}, {'uid': 3, 'name': 'charlie', 'password':

'123456'}]

>>> del customers[1]

>>> print(customers)

[{'uid': 1, 'name': 'John', 'password': '123456'}]

##Delete all fields

>>> for x in customers:

del x["uid"]

>>> x

{'name': 'John', 'password': '123456'}

Data Type conversions:

There may be times when you want to specify a type on to a variable. This can be done with

casting. Python is an object-orientated language, and as such it uses classes to define data

types, including its primitive types. Casting in python is therefore done using constructor

functions:

int() - constructs an integer number from an integer literal, a float literal (by rounding down

to the previous whole number), or a string literal (providing the string represents a whole

number)

float() - constructs a float number from an integer literal, a float literal or a string literal

(providing the string represents a float or an integer)

str() - constructs a string from a wide variety of data types, including strings, integer literals

and float literals

PYTHON PROGRAMMING I YEAR/II SEM MRCET

53

Examples:

Integers:

x = int(1) # x will be 1

y = int(2.8) # y will be 2

z = int("3") # z will be 3

Print(x)

Print(y)

Print(z)

Output:

1

2

3

Floats:

x = float(1) # x will be 1.0

y = float(2.8) # y will be 2.8

z = float("3") # z will be 3.0

w = float("4.2") # w will be 4.2

Print(x)

Print(y)

Print(z)

Print(w)

Output:

1.0

2.8

3.0

4.2

PYTHON PROGRAMMING I YEAR/II SEM MRCET

54

Strings:

x = str("s1") # x will be 's1'

y = str(2) # y will be '2'

z = str(3.0) # z will be '3.0'Print(x)

Print(y)

Print(z)

Output:

s1

2

3.0

Commenting in python:

Single-line comments begins with a hash(#) symbol and is useful in mentioning that the

whole line should be considered as a comment until the end of line.

AMulti line comment is useful when we need to comment on many lines. In python, triple

double quote(“ “ “) and single quote(„ „ „)are used for multi-line commenting.

PYTHON PROGRAMMING I YEAR/II SEM MRCET

55

UNIT II

Variables and Operators: Understanding Python variables, multiple variable declarations,

Operators in Python: Arithmetic operators, Assignment operators, Comparison operators,

Logical operators, Identity operators, Membership operators, Bitwise operators, Precedence

of operators, Expressions.

Control Flow and Loops: Indentation, if statement, if-else statement, chained conditional if-

elif -else statement, Loops: While loop, for loop using ranges, Loop manipulation using

break, continue and pass.

Variables:

Variables are nothing but reserved memory locations to store values. This means that when

you create a variable you reserve some space in memory.

Based on the data type of a variable, the interpreter allocates memory and decides what can

be stored in the reserved memory. Therefore, by assigning different data types to variables,

you can store integers, decimals or characters in these variables.

Rules for Python variables:

• Avariable name must start with a letter or the underscore character

• Avariable name cannot start with a number

• A variable name can only contain alpha-numeric characters and underscores (A-z, 0-9,

and _)

• Variable names are case-sensitive (age, Age and AGE are three different variables)

Assigning Values to Variables:

Python variables do not need explicit declaration to reserve memory space. The declaration

happens automatically when you assign a value to a variable. The equal sign (=) is used to

assign values to variables.

The operand to the left of the = operator is the name of the variable and the operand to the

right of the = operator is the value stored in the variable

I YEAR/II SEM MRCET PYTHON PROGRAMMING

54

This produces the following result −

100

1000.0

John

For example:

print (c) #John

Multiple Assignment:

Python allows you to assign a single value to several variables simultaneously.

For example :

a = b = c = 1

Here, an integer object is created with the value 1, and all three variables are assigned to the

same memory location. You can also assign multiple objects to multiple variables.

For example −

a,b,c = 1,2,"mrcet“

Here, two integer objects with values 1 and 2 are assigned to variables a and b respectively,

and one string object with the value "john" is assigned to the variable c.

Output Variables:

The Python print statement is often used to output variables.

Variables do not need to be declared with any particular type and can even change type after

they have been set.

x = 5

x = "mrcet "

print(x)

Output:mrcet

x is of type int

x is now of type str

This produces the following result −

100

1000.0

John

PYTHON PROGRAMMING I YEAR/II SEM MRCET

57

To combine both text and a variable, Python uses the “+” character:

Example

x = "awesome"

print("Python is " + x)

Output

Python is awesome

You can also use the + character to add a variable to another variable:

Example

x = "Python is "

y = "awesome"

z = x + y

print(z)

Output:

Python is awesome

Python basic statements:

A statement is an instruction that the Python interpreter can execute. We have normally two

basic statements, the assignment statement and the print statement. Some other kinds of

statements that are if statements, while statements, and for statements generally called as

control flows.

Examples:

An assignment statement creates new variables and gives them values:

>>> x=10

>>> college="mrcet"

An print statement is something which is an input from the user, to be printed / displayed on

to the screen (or) monitor.

>>> print("mrcetcolege")

mrcet college

http://en.wikipedia.org/wiki/Statement_(programming)

PYTHON PROGRAMMING I YEAR/II SEM MRCET

58

Python basic Operators:

Operators are used to perform operations on variables and values. Python divides the

operators in the following groups:

 Arithmetic operators

 Assignment operators

 Comparison operators

 Logical operators

 Identity operators

 Membership operators

 Bitwise operators

Arithmetic operators

Operator Name Example

+ Addition x + y

- Subtraction x - y

* Multiplication x * y

/ Division x / y

Assignment operators

Operator Example Same As

= x = 5 x = 5

+= x += 3 x = x + 3

-= x -= 3 x = x - 3

PYTHON PROGRAMMING I YEAR/II SEM MRCET

59

*= x *= 3 x = x * 3

/= x /= 3 x = x / 3

Comparison operators

Operator Name Example

== Equal x == y

!= Not equal x != y

> Greater than x > y

< Less than x < y

>= Greater than or equal to x >= y

<= Less than or equal to x <= y

Logical operators

Operator Description Example

and Returns True if both

statements are true

x < 5 and x < 10

or Returns True if one ofthe

statements is true

x < 5 or x < 4

not Reverse the result, returns

False if the result is true

not(x < 5 and x < 10)

Identity operators

Operator Description Example

PYTHON PROGRAMMING I YEAR/II SEM MRCET

60

is Returns true if both variables are the same object x is y

is not Returns true if both variables are not the same object x is not y

Membership operators

Operator Description Example

in Returns True if a sequence with the specified value is

present in the object

x in y

not in Returns True if a sequence with the specified value is not

present in the object

x not in y

Bitwise operators

Operator Name Description

& AND Sets each bit to 1 if both bits are 1

| OR Sets each bit to 1 if one oftwo bits is 1

^ XOR Sets each bit to 1 if only one of two bits is 1

~ NOT Inverts all the bits

<< Zero fill left shift Shift left by pushing zeros in from the right and let the

leftmost bits fall off

>> Signed right shift Shift right by pushing copies of the leftmost bit in from the

left, and let the rightmost bits fall off

Precedence of Operators:

PYTHON PROGRAMMING I YEAR/II SEM MRCET

61

Operator precedence affects how an expression is evaluated.

For example, x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has higher

precedence than +, so it first multiplies 3*2 and then adds into 7.

Example 1:

>>> 3+4*2

11

Multiplication gets evaluated before the addition operation

>>> (10+10)*2

40

Parentheses () overriding the precedence of the arithmetic operators

Example 2:

a = 20

b = 10

c = 15

d = 5

e = 0

e = (a + b) * c / d #(30 * 15) / 5

print("Value of (a + b) * c / d is ", e)

e = ((a + b) * c) / d # (30 * 15) / 5

print("Value of ((a + b) * c) / d is ", e)

e = (a + b) * (c / d); # (30) * (15/5)

print("Value of (a + b) * (c / d) is ", e)

e = a + (b * c) / d; # 20 + (150/5)

print("Value of a + (b * c) / d is ", e)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/opprec.py

Value of (a + b) * c / d is 90.0
Value of ((a + b) * c) / d is 90.0
Value of (a + b) * (c / d) is 90.0

PYTHON PROGRAMMING I YEAR/II SEM MRCET

62

Value of a + (b * c) / d is 50.0

Expressions:

An expression is a combination of values, variables, and operators. An expression is

evaluated using assignment operator.

Examples: Y=x + 17

>>> x=10

>>> z=x+20

>>> z

30

>>> x=10

>>> y=20

>>> c=x+y

>>> c

30

Avalue all by itself is a simple expression, and so is a variable.

>>> y=20

>>> y

20

Python also defines expressions only contain identifiers, literals, and operators. So,

Identifiers: Any name that is used to define a class, function, variable module, or object is

an identifier.

Literals: These are language-independent terms in Python and should exist independently in

any programming language. In Python, there are the string literals, byte literals, integer

literals, floating point literals, and imaginary literals.

PYTHON PROGRAMMING I YEAR/II SEM MRCET

63

Operators: In Python you can implement the following operations using the corresponding

tokens.

PYTHON PROGRAMMING I YEAR/II SEM MRCET

64

Operator Token

add +

subtract -

multiply *

Integer Division /

remainder %

Binary left shift <<

Binary right shift >>

and &

or \

Less than <

Greater than >

Less than or equal to <=

Greater than or equal to >=

Check equality ==

Check not equal !=

PYTHON PROGRAMMING I YEAR/II SEM MRCET

65

Some of the python expressions are:

Generator expression:

Syntax:(compute(var) for var in iterable)

>>> x = (i for i in 'abc') #tuple comprehension

>>> x

<generator object <genexpr> at 0x033EEC30>

>>> print(x)

<generator object <genexpr> at 0x033EEC30>

You might expect this to print as ('a', 'b', 'c') but it prints as <generator object <genexpr>

at 0x02AAD710> The result of a tuple comprehension is not a tuple: it is actually a

generator. The only thing that you need to know now about a generator now is that you

can iterate over it, but ONLY ONCE.

Conditional expression:

Syntax:true_value if Condition else false_value

>>> x = "1" if True else "2"

>>> x

'1'

PYTHON PROGRAMMING I YEAR/II SEM MRCET

66

CONTROLFLOWAND LOOPS

conditional (if), alternative (if-else), chained conditional (if- elif -else), Loops: For loop

using ranges, string, use of while loops in python, Loop manipulation using pass,

continue and break

Conditional (if):

The if statement contains a logical expression using which data is compared and a decision

is made based on the result of the comparison.

Syntax:

if expression:

statement(s)

If the boolean expression evaluates to TRUE, then the block of statement(s) inside the if

statement is executed. If boolean expression evaluates to FALSE, then the first set of

code after the end of the if statement(s) is executed.

if Statement Flowchart:

Fig: Operation of if statement

Example: Python if Statement

a = 3

if a > 2:

print(a, "isgreater")

print("done")

PYTHON PROGRAMMING I YEAR/II SEM MRCET

67

a = -1

if a < 0:

print(a, "a is smaller")

print("Finish")

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/if1.py

3 is greater

done

-1 a is smaller

Finish

a=10

if a>9:

print("A is Greater than 9")

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/if2.py

Ais Greater than 9

Alternative if(If-Else):

An else statement can be combined with an if statement. An else statement contains the

block of code (false block) that executes if the conditional expression in the if statement

resolves to 0 or a FALSE value.

The else statement is an optional statement and there could be at most only one

elseStatement following if.

Syntax of if - else :

if test expression:

Body of if stmts

else:

Body of else stmts

PYTHON PROGRAMMING I YEAR/II SEM MRCET

68

If - else Flowchart :

Fig: Operation of if – else statement

Example of if - else:

a=int(input('enter the number'))

if a>5:

print("a is greater")

else:

print("a is smaller than the input given")

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ifelse.py

enter the number 2

a is smaller than the input given

--

a=10

b=20

if a>b:

print("A is Greater than B")

else:

print("B is Greater than A")

PYTHON PROGRAMMING I YEAR/II SEM MRCET

69

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/if2.py

B is Greater than A

Chained Conditional: (If-elif-else):

The elif statement allows us to check multiple expressions for TRUE and execute a

block of code as soon as one of the conditions evaluates to TRUE. Similar to the else,

the elif statement is optional. However, unlike else, for which there can be at most one

statement, there can be an arbitrary number of elif statements following an if.

Syntax of if – elif - else :

If test expression:

Body of if stmts

elif test expression:

Body of elifstmts
else:

Body of else stmts

Flowchart of if – elif - else:

Fig: Operation of if – elif - else statement

Example of if - elif – else:

PYTHON PROGRAMMING I YEAR/II SEM MRCET

70

a=int(input('enter the number'))

b=int(input('enter the number'))

c=int(input('enter the number'))

if a>b:

print("a is greater")

elif b>c:

print("b is greater")

else:

print("c is greater")

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ifelse.py

enter the number5
enter the number2
enter the number9

a is greater

>>>

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ifelse.py

enter the number2
enter the number5
enter the number9

c is greater

var = 100

if var == 200:

print("1 - Got a true expression value")

print(var)
elif var == 150:

print("2 - Got a true expression value")
print(var)

elif var == 100:

print("3 - Got a true expression value")

print(var)

else:

print("4 - Got a false expression value")
print(var)

print("Good bye!")

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ifelif.py

PYTHON PROGRAMMING I YEAR/II SEM MRCET

71

3 - Got a true expression value

100

Good bye!

Iteration:

A loop statement allows us to execute a statement or group of statements multiple times as

long as the condition is true. Repeated execution of a set of statements with the help of loops

is called iteration.

Loops statements are used when we need to run same code again and again, each time with a
different value.

Statements:

In Python Iteration (Loops) statements are of three types:

1. While Loop

2. For Loop

3. Nested For Loops

While loop:

 Loops are either infinite or conditional. Python while loop keeps reiterating a block of

code defined inside it until the desired condition is met.

 The while loop contains a boolean expression and the code inside the loop is

repeatedly executed as long as the boolean expression is true.

 The statements that are executed inside while can be a single line of code or a block of

multiple statements.

Syntax: Flowchart:

while(expression):

Statement(s)

PYTHON PROGRAMMING I YEAR/II SEM MRCET

72

Example Programs:

1.

i=1

while i<=6:

print("Mrcet college")

i=i+1

output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/wh1.py

Mrcet college

Mrcet college

Mrcet college

Mrcet college

Mrcet college

Mrcet college

2.

i=1

while i<=3:

print("MRCET",end=" ")

j=1

while j<=1:

print("CSE DEPT",end="")

j=j+1
i=i+1
print()

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/wh2.py

MRCET CSE DEPT

MRCET CSE DEPT

MRCET CSE DEPT

PYTHON PROGRAMMING I YEAR/II SEM MRCET

73

3.

i=1

j=1
while i<=3:

print("MRCET",end=" ")

while j<=1:

print("CSE DEPT",end="")

j=j+1

i=i+1
print()

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/wh3.py

MRCET CSE DEPT

MRCET
MRCET

4.

i = 1

while (i< 10):

print (i)

i = i+1

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/wh4.py

1

2
3

4

5

6

7

8

9

PYTHON PROGRAMMING I YEAR/II SEM MRCET

74

2.
a = 1

while (a<10):

print ('Iteration',a)

a = a + 1

if (a == 4):

break

print ('While loop terminated')

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/wh5.py

Iteration 1
Iteration 2
Iteration 3

While loop terminated

count = 0

while (count < 9):

print("The count is:", count)

count = count + 1

print("Good bye!")

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/wh.py =
The count is: 0

The count is: 1

The count is: 2

The count is: 3

The count is: 4

The count is: 5

The count is: 6

The count is: 7

The count is: 8

Good bye!

PYTHON PROGRAMMING I YEAR/II SEM MRCET

75

For loop:

Python for loop is used for repeated execution of a group of statements for the desired

number of times. It iterates over the items of lists, tuples, strings, the dictionaries and other

iterable objects

Syntax: for var in sequence:

Statement(s)

Holds the value of item

in sequence in each iteration

Sample Program:

numbers = [1, 2, 4, 6, 11, 20]

seq=0

for val in numbers:

seq=val*val

print(seq)

A sequence of values assigned to var in each iteration

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/fr.py

1

4

16

36

121

400

Flowchart:

PYTHON PROGRAMMING I YEAR/II SEM MRCET

76

Iterating over a list:

#list of items

list = ['M','R','C','E','T']

i = 1

#Iterating over the list
for item in list:

print ('college ',i,' is ',item)
i = i+1

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/lis.py

college 1 is M

college 2 is R

college 3 is C

college 4 is E

college 5 is T

Iteratingover a Tuple:

tuple = (2,3,5,7)

PYTHON PROGRAMMING I YEAR/II SEM MRCET

77

print ('These are the first four prime numbers ')
#Iterating over the tuple

for a in tuple:

print (a)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fr3.py

These are the first four prime numbers
2
3

5
7

Iterating over a dictionary:

#creating a dictionary

college = {"ces":"block1","it":"block2","ece":"block3"}

#Iterating over the dictionary to print keys

print ('Keys are:')
for keys in college:

print (keys)

#Iterating over the dictionary to print values

print ('Values are:')

for blocks in college.values():
print(blocks)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/dic.py

Keys are:
ces
it

ece
Values are:
block1

block2

block3

Iterating over a String:

#declare a string to iterate over

college = 'MRCET'

PYTHON PROGRAMMING I YEAR/II SEM MRCET

78

#Iterating over the string

for name in college:

print (name)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/strr.py

M

R

C

E
T

Nested For loop:

When one Loop defined within another Loop is called Nested Loops.

Syntax:

for val in sequence:

for val in sequence:

statements

statements

Example 1 of Nested For Loops (Pattern Programs)

for i in range(1,6):

for j in range(0,i):

print(i, end=" ")

print('')

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/nesforr.py

1

2 2

3 3 3

4 4 4 4

5 5 5 5 5

PYTHON PROGRAMMING I YEAR/II SEM MRCET

79

Example 2 of Nested For Loops (Pattern Programs)

for i in range(1,6):

for j in range(5,i-1,-1):

print(i, end=" ")

print('')

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/nesforr.py

Output:

1 1 1 1 1

2 2 2 2

3 3 3

4 4

Breakand continue:

In Python, break and continue statements can alter the flow of a normal loop.Sometimes

we wish to terminate the current iteration or even the whole loop without checking test

expression.The break and continue statements are used in these cases.

Break:

The break statement terminates the loop containing it and control of the program flows to
the statement immediately after the body of the loop.If break statement is inside a nested
loop (loop inside another loop), break will terminate the innermost loop.

Flowchart:

PYTHON PROGRAMMING I YEAR/II SEM MRCET

80

The following shows the working of break statement in for and while loop:

for var in sequence:

code inside for loop

If condition:

break (if break condition satisfies it jumps to outside loop)

code inside for loop

code outside for loop

while test expression

code inside while loop

If condition:

break (if break condition satisfies it jumps to outside loop)

code inside while loop

code outside while loop

Example:

for val in "MRCET COLLEGE":

if val == " ":

break

PYTHON PROGRAMMING I YEAR/II SEM MRCET

81

print(val)

print("The end")

Output:

M

R

C

E

T

The end

Program to display all the elements before number 88

for num in [11, 9, 88, 10, 90, 3, 19]:

print(num)

if(num==88):
print("The number 88 is found")
print("Terminating the loop")

break

Output:

11

9

88

The number 88 is found

Terminating the loop

for letter in "Python": # First Example

if letter == "h":
break

print("Current Letter :", letter)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/br.py =

Current Letter : P

Current Letter : y

PYTHON PROGRAMMING I YEAR/II SEM MRCET

82

Current Letter : t

Continue:

The continue statement is used to skip the rest of the code inside a loop for the current

iteration only. Loop does not terminate but continues on with the next iteration.

Flowchart:

The following shows the working of break statement in for and while loop:

for var in sequence:

code inside for loop

If condition:

continue (if break condition satisfies it jumps to outside loop)

code inside for loop

code outside for loop

while test expression

code inside while loop

If condition:

continue(if break condition satisfies it jumps to outside loop)

code inside while loop

PYTHON PROGRAMMING I YEAR/II SEM MRCET

83

code outside while loop

Example:

Program to show the use of continue statement inside loops

for val in "string":

if val == "i":

continue

print(val)

print("The end")

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/cont.py

s

t

r

n

g

The end

program to display only odd numbers

for num in [20, 11, 9, 66, 4, 89, 44]:

Skipping the iteration when number is even
if num%2 == 0:

continue

This statement will be skipped for all even numbers
print(num)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/cont2.py

11

9

89

for letter in "Python": # First Example

PYTHON PROGRAMMING I YEAR/II SEM MRCET

84

if letter == "h":

continue
print("Current Letter :", letter)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/con1.py

Current Letter : P

Current Letter : y

Current Letter : t
Current Letter : o

Current Letter : n

Pass:

In Python programming, pass is a null statement. The difference between

a comment and pass statement in Python is that, while the interpreter ignores a comment

entirely, pass is not ignored.

pass is just a placeholder for functionality to be added later.

Example:

sequence = {'p', 'a', 's', 's'}
for val in sequence:

pass

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/f1.y.py

>>>

Similarily we can also write,

def f(arg): pass # a function that does nothing (yet)

class C: pass # a class with no methods (yet)

https://www.programiz.com/python-programming/statement-indentation-comments

PYTHON PROGRAMMING I YEAR/I SEM MRCET

85

Unit III

Arrays are a fundamental data structure, and an important part of most programming

languages. In Python, they are containers which are able to store more than one item at the

same time.

Specifically, they are an ordered collection of elements with every value being of the same

data type. That is the most important thing to remember about Python arrays - the fact that

they can only hold a sequence of multiple items that are of the same type.

Difference between Python Lists and Python Arrays

Lists are one of the most common data structures in Python, and a core part of the language.

Lists and arrays behave similarly.

Just like arrays, lists are an ordered sequence of elements.

They are also mutable and not fixed in size, which means they can grow and shrink

throughout the life of the program. Items can be added and removed, making them very

flexible to work with.

However, lists and arrays are not the same thing.

Lists store items that are of various data types. This means that a list can contain integers,

floating point numbers, strings, or any other Python data type, at the same time. That is not

the case with arrays.

Arrays store only items that are of the same single data type. There are arrays that contain

only integers, or only floating point numbers, or only any other Python data type you want to

use.

Advantages Python Arrays

Lists are built into the Python programming language, whereas arrays aren't. Arrays are not a

built-in data structure, and therefore need to be imported via the array module in order to be

used.

Arrays of the array module are a thin wrapper over C arrays, and are useful when you want to

work with homogeneous data.

They are also more compact and take up less memory and space which makes them more size

efficient compared to lists.

Creating Python arrays

In order to create Python arrays, you'll first have to import the array module which contains

all the necassary functions.

There are three ways you can import the array module:

1. By using import array at the top of the file. This includes the module array. You would then

go on to create an array using array.array()

PYTHON PROGRAMMING I YEAR/I SEM MRCET

86

import array

#how you would create an array

array.array()

2. Instead of having to type array.array() all the time, you could use import array as arr at the

top of the file, instead of import array alone. You would then create an array by

typing arr.array(). The arr acts as an alias name, with the array constructor then immediately

following it.

import array as arr

#how you would create an array

arr.array()

3. Lastly, you could also use from array import *, with * importing all the functionalities

available. You would then create an array by writing the array() constructor alone.

from array import *

#how you would create an array

array()

Define Arrays in Python

Once the array module is imported, we can then go on to define a Python array.

The general syntax for creating an array looks like this:

variable_name = array(typecode,[elements])

 variable_name would be the name of the array.

 The typecode specifies what kind of elements would be stored in the array. Whether it would

be an array of integers, an array of floats or an array of any other Python data type.

Remember that all elements should be of the same data type.

 Inside square brackets you mention the elements that would be stored in the array, with each

element being separated by a comma. You can also create an empty array by just

writing variable_name = array(typecode) alone, without any elements.

PYTHON PROGRAMMING I YEAR/I SEM MRCET

87

The different typecodes that can be used with the different data types when defining Python

arrays:

TYPECODE C TYPE PYTHON TYPE SIZE

'b' signed char int 1

'B' unsigned char int 1

'u' wchar_t Unicode character 2

'h' signed short int 2

'H' unsigned short int 2

'i' signed int int 2

'I' unsigned int int 2

'l' signed long int 4

'L' unsigned long int 4

'q' signed long long int 8

'Q' unsigned long long int 8

'f' float float 4

'd' double float 8

Example of how to define an array in Python:

import array as arr

numbers = arr.array('i',[10,20,30])

print(numbers)

#output

#array('i', [10, 20, 30])

PYTHON PROGRAMMING I YEAR/I SEM MRCET

88

Example of how to create an array numbers of float data type.

from array import *

#an array of floating point values

numbers = array('d',[10.0,20.0,30.0])

print(numbers)

#output

#array('d', [10.0, 20.0, 30.0])

Array Indexing and How to Access Individual Items in an Array in Python

Each item in an array has a specific address. Individual items are accessed by referencing

their index number.

Indexing in Python, and in all programming languages and computing in general, starts at 0.

To access an element, we first write the name of the array followed by square brackets. Inside

the square brackets you include the item's index number.

The index value of the last element of an array is always one less than the length of the array.

Where n is the length of the array, n - 1 will be the index value of the last item.

The general syntax would look something like this:

array_name[index_value_of_item]

Example:

import array as arr

numbers = arr.array('i',[10,20,30])

print(numbers[0]) # gets the 1st element

print(numbers[1]) # gets the 2nd element

print(numbers[2]) # gets the 3rd element

#output

#10

#20

#30

We can also access each individual element using negative indexing.

With negative indexing, the last element would have an index of -1, the second to last

element would have an index of -2, and so on.

PYTHON PROGRAMMING I YEAR/I SEM MRCET

89

Example

import array as arr

numbers = arr.array('i',[10,20,30])

print(numbers[-1]) #gets last item

print(numbers[-2]) #gets second to last item

print(numbers[-3]) #gets first item

#output

#30

#20

#10

How to Slice an Array in Python

To access a specific range of values inside the array, use the slicing operator, which is a

colon :.

When using the slicing operator and you only include one value, the counting starts from 0 by

default. It gets the first item, and goes up to but not including the index number you specify.

import array as arr

#original array

numbers = arr.array('i',[10,20,30])

#get the values 10 and 20 only

print(numbers[:2]) #first to second position

#output

#array('i', [10, 20])

When you pass two numbers as arguments, you specify a range of numbers. In this case, the

counting starts at the position of the first number in the range, and up to but not including the

second one:

import array as arr

#original array

numbers = arr.array('i',[10,20,30])

#get the values 20 and 30 only

print(numbers[1:3]) #second to third position

#output

#array('i', [20, 30])

PYTHON PROGRAMMING I YEAR/I SEM MRCET

90

Array Types in Python

When talking about arrays, any programming language like C or Java offers two types of

arrays. They are:

Single dimensional arrays: These arrays represent only one row or one column of elements.

For example, marks obtained by a student in 5 subjects can be written as 'marks' array, as:

marks = array('i', [50, 60, 70, 66, 72])

The above array contains only one row of elements. Hence it is called single dimensional

array or one dimensional array.

Multi-dimensional arrays: These arrays represent more than one row and more than one

column of elements. For example, marks obtained by 3 students each one in 5 subjects can be

written as 'marks' array as:

marks = [[50, 60, 70, 66, 72], [60, 62, 71, 56, 70], [55, 59, 80, 68, 65]]

The first student's marks are written in first row. The second student's marks are in second

row and the third student's marks are in third row. In each row, the marks in 5 subjects are

mentioned. Thus this array contains 3 rows and 5 columns and hence it is called multi-

dimensional array.

marks =[[50, 60, 70, 66, 72],

[60, 62, 71, 56, 70],

[55, 59, 80, 68, 65]]

Each row of the above array can be again represented as a single dimensional array. Thus the

above array contains 3 single dimensional arrays. Hence, it is called a two dimensional array.

A two dimensional array is a combination of several single dimensional arrays. Similarly, a

three dimensional array is a combination of several two dimensional arrays.

In Python, we can create and work with single dimensional arrays only. So far, the examples

and methods discussed by us are applicable to single dimensional arrays.

Python does not support multi-dimensional arrays. We can construct multidimensional arrays

using third party packages like numpy (numerical python)

PYTHON PROGRAMMING I YEAR/I SEM MRCET

91

Unit III

Arrays are a fundamental data structure, and an important part of most programming

languages. In Python, they are containers which are able to store more than one item at the

same time.

Specifically, they are an ordered collection of elements with every value being of the same

data type. That is the most important thing to remember about Python arrays - the fact that

they can only hold a sequence of multiple items that are of the same type.

Difference between Python Lists and Python Arrays

Lists are one of the most common data structures in Python, and a core part of the language.

Lists and arrays behave similarly.

Just like arrays, lists are an ordered sequence of elements.

They are also mutable and not fixed in size, which means they can grow and shrink

throughout the life of the program. Items can be added and removed, making them very

flexible to work with.

However, lists and arrays are not the same thing.

Lists store items that are of various data types. This means that a list can contain integers,

floating point numbers, strings, or any other Python data type, at the same time. That is not

the case with arrays.

Arrays store only items that are of the same single data type. There are arrays that contain

only integers, or only floating point numbers, or only any other Python data type you want to

use.

Advantages Python Arrays

Lists are built into the Python programming language, whereas arrays aren't. Arrays are not a

built-in data structure, and therefore need to be imported via the array module in order to be

used.

Arrays of the array module are a thin wrapper over C arrays, and are useful when you want to

work with homogeneous data.

They are also more compact and take up less memory and space which makes them more size

efficient compared to lists.

Creating Python arrays

In order to create Python arrays, you'll first have to import the array module which contains

all the necassary functions.

There are three ways you can import the array module:

1. By using import array at the top of the file. This includes the module array. You would then

go on to create an array using array.array()

PYTHON PROGRAMMING I YEAR/I SEM MRCET

92

import array

#how you would create an array

array.array()

2. Instead of having to type array.array() all the time, you could use import array as arr at the

top of the file, instead of import array alone. You would then create an array by

typing arr.array(). The arr acts as an alias name, with the array constructor then immediately

following it.

import array as arr

#how you would create an array

arr.array()

3. Lastly, you could also use from array import *, with * importing all the functionalities

available. You would then create an array by writing the array() constructor alone.

from array import *

#how you would create an array

array()

Define Arrays in Python

Once the array module is imported, we can then go on to define a Python array.

The general syntax for creating an array looks like this:

variable_name = array(typecode,[elements])

 variable_name would be the name of the array.

 The typecode specifies what kind of elements would be stored in the array. Whether it would

be an array of integers, an array of floats or an array of any other Python data type.

Remember that all elements should be of the same data type.

 Inside square brackets you mention the elements that would be stored in the array, with each

element being separated by a comma. You can also create an empty array by just

writing variable_name = array(typecode) alone, without any elements.

PYTHON PROGRAMMING I YEAR/I SEM MRCET

93

The different typecodes that can be used with the different data types when defining Python

arrays:

TYPECODE C TYPE PYTHON TYPE SIZE

'b' signed char int 1

'B' unsigned char int 1

'u' wchar_t Unicode character 2

'h' signed short int 2

'H' unsigned short int 2

'i' signed int int 2

'I' unsigned int int 2

'l' signed long int 4

'L' unsigned long int 4

'q' signed long long int 8

'Q' unsigned long long int 8

'f' float float 4

'd' double float 8

Example of how to define an array in Python:

import array as arr

numbers = arr.array('i',[10,20,30])

print(numbers)

#output

#array('i', [10, 20, 30])

PYTHON PROGRAMMING I YEAR/I SEM MRCET

94

Example of how to create an array numbers of float data type.

from array import *

#an array of floating point values

numbers = array('d',[10.0,20.0,30.0])

print(numbers)

#output

#array('d', [10.0, 20.0, 30.0])

Array Indexing and How to Access Individual Items in an Array in Python

Each item in an array has a specific address. Individual items are accessed by referencing

their index number.

Indexing in Python, and in all programming languages and computing in general, starts at 0.

To access an element, we first write the name of the array followed by square brackets. Inside

the square brackets you include the item's index number.

The index value of the last element of an array is always one less than the length of the array.

Where n is the length of the array, n - 1 will be the index value of the last item.

The general syntax would look something like this:

array_name[index_value_of_item]

Example:

import array as arr

numbers = arr.array('i',[10,20,30])

print(numbers[0]) # gets the 1st element

print(numbers[1]) # gets the 2nd element

print(numbers[2]) # gets the 3rd element

#output

#10

#20

#30

We can also access each individual element using negative indexing.

With negative indexing, the last element would have an index of -1, the second to last

element would have an index of -2, and so on.

PYTHON PROGRAMMING I YEAR/I SEM MRCET

95

Example

import array as arr

numbers = arr.array('i',[10,20,30])

print(numbers[-1]) #gets last item

print(numbers[-2]) #gets second to last item

print(numbers[-3]) #gets first item

#output

#30

#20

#10

How to Slice an Array in Python

To access a specific range of values inside the array, use the slicing operator, which is a

colon :.

When using the slicing operator and you only include one value, the counting starts from 0 by

default. It gets the first item, and goes up to but not including the index number you specify.

import array as arr

#original array

numbers = arr.array('i',[10,20,30])

#get the values 10 and 20 only

print(numbers[:2]) #first to second position

#output

#array('i', [10, 20])

When you pass two numbers as arguments, you specify a range of numbers. In this case, the

counting starts at the position of the first number in the range, and up to but not including the

second one:

import array as arr

#original array

numbers = arr.array('i',[10,20,30])

#get the values 20 and 30 only

print(numbers[1:3]) #second to third position

#output

#array('i', [20, 30])

PYTHON PROGRAMMING I YEAR/I SEM MRCET

96

Array Types in Python

When talking about arrays, any programming language like C or Java offers two types of

arrays. They are:

Single dimensional arrays: These arrays represent only one row or one column of elements.

For example, marks obtained by a student in 5 subjects can be written as 'marks' array, as:

marks = array('i', [50, 60, 70, 66, 72])

The above array contains only one row of elements. Hence it is called single dimensional

array or one dimensional array.

Multi-dimensional arrays: These arrays represent more than one row and more than one

column of elements. For example, marks obtained by 3 students each one in 5 subjects can be

written as 'marks' array as:

marks = [[50, 60, 70, 66, 72], [60, 62, 71, 56, 70], [55, 59, 80, 68, 65]]

The first student's marks are written in first row. The second student's marks are in second

row and the third student's marks are in third row. In each row, the marks in 5 subjects are

mentioned. Thus this array contains 3 rows and 5 columns and hence it is called multi-

dimensional array.

marks =[[50, 60, 70, 66, 72],

[60, 62, 71, 56, 70],

[55, 59, 80, 68, 65]]

Each row of the above array can be again represented as a single dimensional array. Thus the

above array contains 3 single dimensional arrays. Hence, it is called a two dimensional array.

A two dimensional array is a combination of several single dimensional arrays. Similarly, a

three dimensional array is a combination of several two dimensional arrays.

In Python, we can create and work with single dimensional arrays only. So far, the examples

and methods discussed by us are applicable to single dimensional arrays.

Python does not support multi-dimensional arrays. We can construct multidimensional arrays

using third party packages like numpy (numerical python)

PYTHON PROGRAMMING I YEAR/I SEM MRCET

89

97

98

99

100

101

102

10

10

10

10

107

108

109

110

111

PYTHON PROGRAMMING I YEAR/II SEM MRCET

112

UNIT IV

Functions:

Defining Your Own Functions, Calling Functions, passing parameters and arguments,

Python Function arguments: Keyword Arguments, Default Arguments, Variable-length

arguments, Anonymous Functions, Fruitful Functions (Function Returning Values),

Scope of the Variables in a Function - Global and Local Variables. Powerful Lambda

functions in python.

Functions:

Functions and its use:Function is a group of related statements that perform a specific

task.Functions help break our program into smaller and modular chunks. As our program

grows larger and larger, functions make it more organized and manageable. It avoids

repetition and makes code reusable.

Basically, we can divide functions into the following two types:

1. Built-in functions - Functions that are built into Python.

Ex: abs(),all().ascii(),bool()………so on….

integer = -20

print('Absolute value of -20 is:', abs(integer))

Output:

Absolute value of -20 is: 20

2. User-defined functions - Functions defined by the users themselves.

def add_numbers(x,y):

sum = x + y

return sum

print("The sum is", add_numbers(5, 20))

Output:

https://www.programiz.com/python-programming/built-in-function
https://www.programiz.com/python-programming/user-defined-function

PYTHON PROGRAMMING I YEAR/II SEM MRCET

113

The sum is 25

Parameters and arguments:

Parameters are passed during the definition of function while Arguments are passed during

the function call.

Example:

#here a and b are parameters

def add(a,b): #//function definition

return a+b

#12 and 13 are arguments

#function call

result=add(12,13)

print(result)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/paraarg.py

25

Some examples on functions:

To display vandemataram by using function use no args no return type

#function defination

def display():

print("vandemataram")
print("i am in main")

#function call

display()

print("i am in main")

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

i am in main

vandemataram

PYTHON PROGRAMMING I YEAR/II SEM MRCET

114

i am in main

#Type1 : No parameters and no return type

def Fun1() :

print("function 1")

Fun1()

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

function 1

#Type 2: with param with out return type

def fun2(a) :

print(a)

fun2("hello")

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

Hello

#Type 3: without param with return type

def fun3():

return "welcome to python"

print(fun3())

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

welcome to python

#Type 4: with param with return type

def fun4(a):

PYTHON PROGRAMMING I YEAR/II SEM MRCET

115

return a
print(fun4("python is better then c"))

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

python is better then c

There are three types of Python function arguments using which we can call a function.

1. Default Arguments

2. Keyword Arguments

3. Variable-length Arguments

Syntax:

def functionname():

statements

.

.

.

functionname()

Function definition consists of following components:

1. Keyword def indicates the start of function header.

2. A function name to uniquely identify it. Function naming follows the same rules of

writing identifiers in Python.
3. Parameters (arguments) through which we pass values to a function. They areoptional.
4. Acolon (:) to mark the end of function header.

5. Optional documentation string (docstring) to describe what the function does.

6. One or more valid python statements that make up the function body. Statements musthave

same indentation level (usually 4 spaces).

7. An optional return statement to return a value fromthe function.

Example:

def hf():

https://www.programiz.com/python-programming/keywords-identifier#rules
https://www.programiz.com/python-programming/keywords-identifier#rules

PYTHON PROGRAMMING I YEAR/II SEM MRCET

116

hello world

hf()

In the above example we are just trying to execute the program by calling the function. So it
will not display any error and no output on to the screen but gets executed.

To get the statements of function need to be use print().

#calling function in python:

defhf():

print("hello world")

hf()

Output:

hello world

defhf():

print("hw")

print("ghkfjg 66666")

hf()

hf()

hf()

Output:

hw

ghkfjg 66666

hw

ghkfjg 66666

hw

ghkfjg 66666

def add(x,y):

PYTHON PROGRAMMING I YEAR/II SEM MRCET

117

c=x+y

print(c)

add(5,4)

Output:

9

def add(x,y):

c=x+y

return c

print(add(5,4))

Output:

9

def add_sub(x,y):

c=x+y

d=x-y

return c,d

print(add_sub(10,5))

Output:

(15, 5)

The return statement is used to exit a function and go back to the place from where it was

called. This statement can contain expression which gets evaluated and the value is returned.

If there is no expression in the statement or the return statement itself is not present inside a

function, then the function will return the None object.

defhf():

PYTHON PROGRAMMING I YEAR/II SEM MRCET

118

return "hw"

print(hf())

Output:

hw

def hf():

return "hw"

hf()

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu.py

>>>

def hello_f():

return "hellocollege"

print(hello_f().upper())

Output:

HELLOCOLLEGE

#Passing Arguments

def hello(wish):

return '{}'.format(wish)

print(hello("mrcet"))

Output:

mrcet

PYTHON PROGRAMMING I YEAR/II SEM MRCET

119

Here, the function wish() has two parameters.Since, we have called this function with two

arguments, it runs smoothly and we do not get any error.If we call it with different number

of arguments, the interpreter will give errors.

def wish(name,msg):

"""This function greets to

the person with the provided message"""

print("Hello",name + ' ' + msg)

wish("MRCET","Good morning!")

Output:

Hello MRCET Good morning!

Below is a call to this function with one and no arguments along with their respective error

messages.

>>>wish("MRCET") # only one argument

TypeError: wish() missing 1 required positional argument: 'msg'

>>>wish() # no arguments

TypeError: wish() missing 2 required positional arguments: 'name' and 'msg'

def hello(wish,hello):

return “hi” '{},{}'.format(wish,hello)

print(hello("mrcet","college"))

Output:

himrcet,college

#Keyword Arguments

PYTHON PROGRAMMING I YEAR/II SEM MRCET

120

When we call a function with some values, these values get assigned to the arguments

according to their position.

Python allows functions to be called using keyword arguments. When we call functions in

this way, the order (position) of the arguments can be changed.

(Or)

If you have some functions with many parameters and you want to specify only some

of them, then you can give values for such parameters by naming them - this is

called keyword arguments - we use the name (keyword) instead of the position
(which we have been usingall along) to specifythe arguments to the function.

There are two advantages - one, using the function is easier since we do not need to

worry about the order of the arguments. Two, we can give values to only those

parameters which we want, provided that the other parameters have default argument

values.

def func(a, b=5, c=10):

print 'a is', a, 'and b is', b, 'and c is', c

func(3, 7)

func(25, c=24)

func(c=50, a=100)

Output:

a is 3 and b is 7 and c is 10
a is 25 and b is 5 and c is 24

a is 100 and b is 5 and c is 50

Note:

The function named funchas one parameter without default argument values,

followed by two parameters with default argument values.

In the first usage, func(3, 7), the parameter a gets the value 3, the parameter b gets the

value 5 and c gets the default value of 10.

PYTHON PROGRAMMING I YEAR/II SEM MRCET
In the second usage func(25, c=24), the variable a gets the value of 25 due to the

121

position of the argument. Then, the parameter c gets the value of 24 due to naming i.e.
keyword arguments. The variableb gets the defaultvalue of 5.

In the third usage func(c=50, a=100), we use keyword arguments completely to
specify the values. Notice, that we are specifying value for parameter c before that
for a even though a is defined before c in the function definition.

For example: if you define the function like below

def func(b=5, c=10,a): # shows error : non-default argument follows default argument

def print_name(name1, name2):

""" This function prints the name """

print (name1 + " and " + name2 + " are friends")

#calling the function

print_name(name2 = 'A',name1 = 'B')

Output:

B and Aare friends

#Default Arguments

Function arguments can have default values in Python.

We can provide a default value to an argument by using the assignment operator (=)

def hello(wish,name='you'):

return '{},{}'.format(wish,name)

print(hello("good morning"))

Output:

good morning,you

PYTHON PROGRAMMING
def hello(wish,name='you'):

I YEAR/II SEM MRCET

122

return '{},{}'.format(wish,name) //print(wish + „ „ + name)

print(hello("good morning","nirosha")) //hello("good morning","nirosha")

Output:

good morning,nirosha // good morning nirosha

Note:Any number of arguments in a function can have a default value. But once we have a

default argument, all the arguments to its right must also have default values.

This means to say, non-default arguments cannot follow default arguments. For example, if

we had defined the function header above as:

defhello(name='you', wish):

Syntax Error: non-default argument follows default argument

def sum(a=4, b=2): #2 is supplied as default argument

""" This function will print sum of two numbers

if the arguments are not supplied

it will add the default value """

print (a+b)

sum(1,2) #calling with arguments

sum() #calling without arguments

Output:

3

6

Variable-length arguments

PYTHON PROGRAMMING I YEAR/II SEM MRCET
Sometimes you may need more arguments to process function then you mentioned in the

123

definition. If we don‟t know in advance about the arguments needed in function, we can use

variable-length arguments also called arbitrary arguments.

For this an asterisk (*) is placed before a parameter in function definition which can hold

non-keyworded variable-length arguments and a double asterisk (**) is placed before a

parameter in function which can hold keyworded variable-length arguments.

If we use one asterisk (*) like *var, then all the positional arguments from that point till the

end are collected as a tuple called „var‟ and if we use two asterisks (**) before a variable like

**var, then all the positional arguments from that point till the end are collected as

a dictionary called „var‟.

def wish(*names):

"""This function greets all

the person in the names tuple."""

names is a tuple with arguments
for name in names:

print("Hello",name)

wish("MRCET","CSE","SIR","MADAM")

Output:

Hello MRCET

Hello CSE

Hello SIR

Hello MADAM

#Program to find area of a circle using function use single return value function with

argument.

pi=3.14

def areaOfCircle(r):

return pi*r*r

r=int(input("Enter radius of circle"))

http://www.trytoprogram.com/python-programming/python-tuples/
http://www.trytoprogram.com/python-programming/python-dictionary/

PYTHON PROGRAMMING I YEAR/II SEM MRCET

124

print(areaOfCircle(r))

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

Enter radius of circle 3

28.259999999999998

#Program to write sum different product and

function.

def calculete(a,b):

total=a+b

diff=a-b

prod=a*b

div=a/b

mod=a%b

return total,diff,prod,div,mod

a=int(input("Enter a value"))

b=int(input("Enter b value"))

using arguments with return value

#function call

s,d,p,q,m = calculete(a,b)

print("Sum= ",s,"diff= ",d,"mul= ",p,"div= ",q,"mod= ",m)

#print("diff= ",d)

#print("mul= ",p)

#print("div= ",q)

#print("mod= ",m)

Output:

PYTHON PROGRAMMING I YEAR/II SEM MRCET

125

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py
Enter a value 5

Enter b value 6

Sum= 11 diff= -1 mul= 30 div= 0.8333333333333334 mod= 5

#program to find biggest of two numbers using functions.

def biggest(a,b):

if a>b :

return a

else :

return b

a=int(input("Enter a value"))
b=int(input("Enter b value"))

#function call

big= biggest(a,b)

print("big number= ",big)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

Enter a value 5
Enter b value-2
big number= 5

#program to find biggest of two numbers using functions.(nested if)

def biggest(a,b,c):

if a>b :

if a>c :
return a

else :

return c

else :

if b>c :

return b

else :

return c

PYTHON PROGRAMMING I YEAR/II SEM MRCET

126

a=int(input("Enter a value"))

b=int(input("Enter b value"))

c=int(input("Enter c value"))

#function call

big= biggest(a,b,c)

print("big number= ",big)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

Enter a value 5

Enter b value -6

Enter c value 7
big number= 7

#Writer a program to read one subject mark and print pass or fail use single return

values function with argument.

def result(a):
if a>40:

return "pass"

else:

return "fail"

a=int(input("Enter one subject marks"))

print(result(a))

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

Enter one subject marks 35

fail

#Write a program to display mrecetcse dept 10 times on the screen.(while loop)

def usingFunctions():

count =0

while count<10:

print("mrcetcsedept",count)

count=count+1

PYTHON PROGRAMMING I YEAR/II SEM MRCET

127

usingFunctions()

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

mrcetcse dept 0

mrcetcse dept 1

mrcetcse dept 2

mrcetcse dept 3

mrcetcse dept 4

mrcetcse dept 5

mrcetcse dept 6

mrcetcse dept 7

mrcetcse dept 8

mrcetcse dept 9

Anonymous Functions:

Anonymous function is a function i.e. defined without name.

While normal functions are defined using the def keyword.

Anonymous functions are defined using lambda keyword hence anonymous functions are

also called lambda functions.

Syntax:lambda arguments: expression

 Lambda function can have any no. of arguments for any one expression.

 The expression is evaluated and returns.

Use of Lambda functions:

 Lambda functions are used as nameless functions for a short period of time.

 In python lambda functions are an argument to higher order functions.

 Lambda functions are used along with built-in functions like filter(),map() and

reduce()etc….

Write a program to double a given number

double = lambda x:2*x

print(double(5))

PYTHON PROGRAMMING I YEAR/II SEM MRCET

128

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

10

#Write a program to sum of two numbers

add = lambda x,y:x+y

print(add(5,4))

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

9

#Write a program to find biggest of two numbers

biggest = lambda x,y: a if x>y else y

print(biggest(20,30))

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

30

Powerful Lamda function in python:

Lambda functions are used along

reduce()etc….

Filter():

with built-in functions like filter(),map() and

 The filter functions takes list as argument.

 The filter() is called when new list is returned which contains items for which the

function evaluates to true.

 Filter:The filter() function returns an iterator were the items are filteredthrough a
function to test if the item is accepted or not.

Syntax: filter(function, iterable)

PYTHON PROGRAMMING I YEAR/II SEM MRCET

129

#Write a program to filter() function to filter out only even numbers from the given list

myList =[1,2,3,4,5,6]

newList = list(filter(lambda x: x%2 ==0,myList))

print(newList)

Output:

C:\Users\MRCET\AppData\Local\Programs\Python\Python38-32\pyyy\fu1.py

[2, 4, 6]

#Write a program for filter() function to print the items greater than 4

list1 = [10,2,8,7,5,4,3,11,0, 1]

result = filter (lambda x: x > 4, list1)

print(list(result))

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/m1.py =

[10, 8, 7, 5, 11]

Map() :

 Map() function in python takes a function & list.

 The function is called with all items in the list and a new list is returned which
contains items returned by that function for each item.

 Map applies a function to all the items in an list.

 The advantage of the lambda operator can be seen when it is used incombination with

the map() function.

 map() is a function with two arguments:

Syntax: r = map(func, seq)

PYTHON PROGRAMMING I YEAR/II SEM MRCET

130

#Write a program for map() function to double all the items in the list

myList =[1,2,3,4,5,6,7,8,9,10]

newList = list(map(lambda x: x*2,myList))

print(newList)

Output:

C:\Users\MRCET\AppData\Local\Programs\Python\Python38-32\pyyy\fu1.py

[2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

Write a program to seperate the letters of the word "hello" and add the letters as

items of the list.

letters = []

letters = list(map(lambda x:x,"hello"))

print(letters)

Output:

C:\Users\MRCET\AppData\Local\Programs\Python\Python38-32\pyyy\fu1.py

['h', 'e', 'l', 'l', 'o']

#Write a program for map() function to double all the items in the list?

def addition(n):

return n + n

numbers = (1, 2, 3, 4)

result = map(addition, numbers)

print(list(result))

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/m1.py =

[2, 4, 6, 8]

PYTHON PROGRAMMING
Reduce():

I YEAR/II SEM MRCET

131

 Applies the same operation to items of sequence.

 Use the result of the first operation for the next operation

 Returns an item, not alist.

 Reduce: Thereduce(fun,seq)function is used to apply a particular

 function passed in its argument to all of the list elementsmentioned in thesequence

passed along.This function isdefined in “functools” module.

#Write a program to find some of the numbers for the elements of the list by using

reduce()

import functools

myList =[1,2,3,4,5,6,7,8,9,10]

print(functools.reduce(lambda x,y: x+y,myList))

Output:

C:\Users\MRCET\AppData\Local\Programs\Python\Python38-32\pyyy\fu1.py

55

#Write a program for reduce() function to print the product of items in a list

from functools import reduce

list1 = [1,2,3,4,5]

product = reduce (lambda x, y: x*y, list1)

print(product)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/m1.py =

120

Fruitful functions:

We write functions that return values, which we will call fruitful functions. We have seen

the return statement before, but in a fruitful function the return statement includes a return

PYTHON PROGRAMMING I YEAR/II SEM MRCET
value. This statement means: "Return immediately from this function and use the following

132

expression as a return value."
(or)

Any function that returns a value is called Fruitful function. A Function that does not return

a value is called a void function

Return values:

The Keyword return is used to return back the value to the called function.

returns the area of a circle with the given radius:

def area(radius):

temp = 3.14 * radius**2

return temp

print(area(4))

(or)

def area(radius):

return 3.14 * radius**2

print(area(2))

Sometimes it is useful to have multiple return statements, one in each branch of a

conditional:

def absolute_value(x):
if x < 0:

return -x
else:

return x

Since these return statements are in an alternative conditional, only one will be executed.

As soon as a return statement executes, the function terminates without executing any

subsequent statements. Code that appears after a return statement, or any other place the
flow of execution can never reach, is called dead code.

In a fruitful function, it is a good idea to ensure that every possible path through the program

hits a return statement. For example:

PYTHON PROGRAMMING I YEAR/II SEM MRCET

133

def absolute_value(x):

if x < 0:
return -x

if x > 0:

return x

This function is incorrect because if x happens to be 0, both conditions is true, and the

function ends without hitting a return statement. If the flow of execution gets to the end of a

function, the return value is None, which is not the absolute value of 0.

>>> print absolute_value(0)

None

By the way, Python provides a built-in function called abs that computes absolute values.

Write a Python function that takes two lists and returns True if they have at least one

common member.

def common_data(list1, list2):

for x in list1:

for y in list2:

if x == y:

result = True

return result

print(common_data([1,2,3,4,5], [1,2,3,4,5]))
print(common_data([1,2,3,4,5], [1,7,8,9,510]))

print(common_data([1,2,3,4,5], [6,7,8,9,10]))

Output:

C:\Users\MRCET\AppData\Local\Programs\Python\Python38-32\pyyy\fu1.py

True
True
None

def area(radius):

b = 3.14159 * radius**2

return b

Local and Global scope:

PYTHON PROGRAMMING I YEAR/II SEM MRCET

134

Local Scope:

A variable which is defined inside a function is local to that function. It is accessible from

the point at which it is defined until the end of the function, and exists for as long as the

function is executing

Global Scope:

A variable which is defined in the main body of a file is called a global variable. It will be

visible throughout the file, and also inside any file which imports that file.

 The variable defined inside a function can also be made global by using the global

statement.

def function_name(args):

.............

global x #declaring global variable inside a function

..............

create a global variable

x = "global"

def f():

print("x inside :", x)

f()

print("x outside:", x)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

x inside : global

x outside: global

create a local variable

def f1():

PYTHON PROGRAMMING I YEAR/II SEM MRCET

135

y = "local"

print(y)

f1()

Output:

local

 If we try to access the local variable outside the scope for example,

def f2():

y = "local"

f2()

print(y)

Then when we try to run it shows an error,

Traceback (most recent call last):

File "C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py", line

6, in <module>

print(y)

NameError: name 'y' is not defined

The output shows an error, because we are trying to access a local variable y in a global

scope whereas the local variable only works inside f2() or local scope.

use local and global variables in same code

x = "global"

def f3():

global x
y = "local"

x = x * 2

print(x)

print(y)

f3()

PYTHON PROGRAMMING I YEAR/II SEM MRCET

136

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

globalglobal

local

 In the above code, we declare x as a global and y as a local variable in the f3(). Then,

we use multiplication operator * to modify the global variable x and we print

both x and y.

 After calling the f3(), the value of x becomes global global because we used the x *

2 to print two times global. After that, we print the value of local variable y i.e local.

use Global variable and Local variable with same name

x = 5

def f4():

x = 10

print("local x:", x)

f4()

print("global x:", x)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

local x: 10

global x: 5

Brief on other functions like sort, sorted and range:

The sort() method sorts the elements of a given list in a specific ascending or descending

order.

The syntax of the sort() method is:

list.sort(key=..., reverse=...)

Example:

L1=[2,4,6,8,1,3,5]

L1.sort()

PYTHON PROGRAMMING I YEAR/II SEM MRCET

137

L2=[9,11,13,10,12,15,14]

L2.sort()

The sorted() function returns a sorted list of the specified iterable object.

You can specify ascending or descending order. Strings are sorted alphabetically, and

numbers are sorted numerically.

Note: You cannot sort a list that contains BOTH string values AND numeric values.

Syntax:

sorted(iterable, key=key, reverse=reverse)

Example:

a = (1, 11, 2)

x = sorted(a)

print(x)

The built-in function range() generates the integer numbers between the given start integer

to the stop integer, i.e., It returns a range object. Using for loop, we can iterate over a

sequence of numbers produced by the range() function

range() function in for loop to iterate over numbers defined by range().

How to use range():

range(n) : will generate numbers from 0 to (n-1)

For example: range(8) is equivalent to [0, 1, 2, 3, 4, 5, 6, 7]

range(x, y) : will generate numbers from x to (y-1)

For example: range(5, 9) is equivalent to [5, 6, 7, 8]

range(start, end, step_size) : will generate numbers from start to end with step_size as

incremental factor in each iteration. step_size is default if not explicitly mentioned.

PYTHON PROGRAMMING I YEAR/II SEM MRCET

138

For example: range(1, 10, 2) is equivalent to [1, 3, 5, 7, 9]

Example:

x=10

for i in range(6,x):

print(i)

Output:

6

7

8

9

PYTHON PROGRAMMING I YEAR/II SEM MRCET

139

UNIT – V

File Handling in Python: Introduction to files, Text files and Binary files, Access

Modes,Writing Data to a File, Reading Data from a File, File input / output functions.

Error Handling in Python: Introduction to Errors and Exceptions: Compile-Time Errors,

RuntimeErrors, Logical Errors, Types of Exceptions, Exception Handling, Handling

Multiple Exceptions.

File I/O:

A file is some information or data which stays in the computer storage devices. Python gives

you easy ways to manipulate these files. Generally files divide in two categories,

text file and binary file. Text files are simple text where as the binary files contain binary

data which is only readable by computer.

 Text files: In this type of file, Each line of text is terminated with a special character

called EOL (End of Line), which is the new line character („\n‟) in python by default.

 Binary files: In this type of file, there is no terminator for a line and the data is stored

after converting it into machine understandable binary language.

Text files:

We can create the text files by using the syntax:

Variable name=open (“file.txt”, file mode)

For ex: f= open ("hello.txt","w+")

 We declared the variable f to open a file named hello.txt. Open takes 2 arguments, the

file that we want to open and a string that represents the kinds of permission or
operation we want to do on the file

 Here we used "w" letter in our argument, which indicates write and the plus sign that

means it will create a file if it does not exist in library

 The available option beside "w" are "r" for read and "a" for append and plus sign
means if it is not there then create it

File Modes in Python:

PYTHON PROGRAMMING I YEAR/II SEM MRCET

140

Mode Description

'r' This is the default mode. It Opens file for reading.

'w' This Mode Opens file for writing.

If file does not exist, it creates a new file.

If file exists it truncates the file.

'x' Creates a new file. If file already exists, the operation fails.

'a' Open file in append mode.

If file does not exist, it creates a new file.

't' This is the default mode. It opens in text mode.

'b' This opens in binary mode.

'+' This will open a file for reading and writing (updating)

Reading and Writing files:

The following image shows how to create and open a text file in notepad from command

prompt

PYTHON PROGRAMMING I YEAR/II SEM MRCET

141

(or)

Hit on enter then it shows the following whether to open or not?

Click on “yes” to open else “no” to cancel

Write a python program to open and read a file

a=open(“one.txt”,”r”)

print(a.read())

PYTHON PROGRAMMING I YEAR/II SEM MRCET

142

a.close()

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/filess/f1.py

welcome to python programming

(or)

Note: All the program files and text files need to saved together in a particular file then

only the program performs the operations in the given file mode

f.close() ----This will close the instance of the file somefile.txt stored

Write a python program to open and write “hello world” into a file?

f=open("1.txt","a")

f.write("hello world")

f.close()

Output:

PYTHON PROGRAMMING I YEAR/II SEM MRCET

143

(or)

Note: In the above program the 1.txt file is created automatically and adds hello world

into txt file

If we keep on executing the same program for more than one time then it append the data

that many times

Write a python program to write the content “hi python programming” for the

existing file.

f=open("1.txt",'w')

f.write("hi python programming")

f.close()

Output:

In the above program the hello txt file consist of data like

PYTHON PROGRAMMING I YEAR/II SEM MRCET

144

But when we try to write some data on to the same file it overwrites and saves with the

current data (check output)

Write a python program to open and write the content to file and read it.

fo=open("abc.txt","w+")

fo.write("Python Programming")

print(fo.read())

fo.close()

Output:

(or)

Note: It creates the abc.txt file automatically and writes the data into it

PYTHON PROGRAMMING I YEAR/II SEM MRCET

145

Exception Handling:

Errors and Exceptions:

An exception is an event, which occurs during the execution of a program that disrupts the

normal flow of the program's instructions. In general, when a Python script encounters a

situation that it cannot cope with, it raises an exception. An exception is a Python object

that represents an error.

Python Errors and Built-in Exceptions:Python (interpreter) raises exceptions when it

encounters errors. When writing a program, we, more often than not, will

encounter errors. Error caused by not following the proper structure (syntax) of the language

is called syntax error or parsing error

ZeroDivisionError:

ZeroDivisionError in Python indicates that the second argument used in a division (or

modulo) operation was zero.

OverflowError:

OverflowError in Python indicates that an arithmetic operation has exceeded the limits of

the current Python runtime. This is typically due to excessively large float values, as integer

values that are too big will opt to raise memory errors instead.

ImportError:

It is raised when you try to import a module which does not exist. This may happen if you

made a typing mistake in the module name or the module doesn't exist in its standard path.

In the example below, a module named "non_existing_module" is being imported but it

doesn't exist, hence an import error exception is raised.

IndexError:

An IndexError exception is raised when you refer a sequence which is out of range. In the

example below, the list abc contains only 3 entries, but the 4th index is being accessed,

which will result an IndexError exception.

TypeError:

PYTHON PROGRAMMING I YEAR/II SEM MRCET

146

When two unrelated type of objects are combined, TypeErrorexception is raised.In example

below, an int and a string is added, which will result in TypeError exception.

IndentationError:

Unexpected indent. As mentioned in the "expected an indentedblock" section, Python not

only insists on indentation, it insists on consistentindentation. You are free to choose the

number of spaces of indentation to use, but you then need to stick with it.

Syntax errors:

These are the most basic type of error. They arise when the Python parser is unable to

understand a line of code. Syntax errors are almost always fatal, i.e. there is almost never a

way to successfully execute a piece of code containing syntax errors.

Run-time error:

A run-time error happens when Python understands what you are saying, but runs into

trouble when following your instructions.

Key Error:

Python raises a KeyError whenever a dict() object is requested (using the

format a = adict[key]) and the key is not in the dictionary.

Value Error:

In Python, a value is the information that is stored within a certain object. To encounter a

ValueError in Python means that is a problem with the content of the object you tried to

assign the value to.

Python has many built-in exceptions which forces your program to output an error when

something in it goes wrong. In Python, users can define such exceptionsby creating a new

class. This exception class has to be derived, either directly or indirectly,

from Exception class.

Different types of exceptions:

 ArrayIndexOutOfBoundException.

 ClassNotFoundException.

 FileNotFoundException.

 IOException.

 InterruptedException.

PYTHON PROGRAMMING I YEAR/II SEM MRCET

147

 NoSuchFieldException.

 NoSuchMethodException

Handling Exceptions:

The cause of an exception is often external to the program itself. For example, an incorrect

input, a malfunctioning IO device etc. Because the program abruptly terminates on

encountering an exception, it may cause damage to system resources, such as files. Hence,

the exceptions should be properly handled so that an abrupt termination of the program is

prevented.

Python uses try and except keywords to handle exceptions. Both keywords are followed by

indented blocks.

Syntax:

try :

#statements in try block

except :

#executed when error in try block

Typically we see, most of the times

 Syntactical errors (wrong spelling, colon (:) missing ….),

At developer level and compile level it gives errors.

 Logical errors (2+2=4, instead if we get output as 3 i.e., wrong output …..,),

As a developer we test the application, during that time logical error may obtained.

 Run time error (In this case, if the user doesn‟t know to give input, 5/6 is ok but if

the user say 6 and 0 i.e.,6/0 (shows error a number cannot be divided by zero))

This is not easy compared to the above two errors because it is not done by the

system, it is (mistake) done by the user.

The things we need to observe are:

1. You should be able to understand the mistakes; the error might be done by user, DB

connection or server.

2. Whenever there is an error execution should not stop.

PYTHON PROGRAMMING I YEAR/II SEM MRCET

148

Ex: Banking Transaction

3. The aim is execution should not stop even though an error occurs.

For ex:

a=5

b=2

print(a/b)

print("Bye")

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ex1.py

2.5

Bye

 The above is normal execution with no error, but if we say when b=0, it is a

critical and gives error, see below

a=5

b=0

print(a/b)

print("bye") #this has to be printed, but abnormal termination

Output:

Traceback (most recent call last):

File "C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ex2.py", line

3, in <module>

print(a/b)

ZeroDivisionError: division by zero

 To overcome this we handle exceptions using except keyword

PYTHON PROGRAMMING I YEAR/II SEM MRCET

149

a=5

b=0

try:

print(a/b)

except Exception:

print("number can not be divided by zero")

print("bye")

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ex3.py

number can not be divided by zero

bye

 The except block executes only when try block has an error, check it below

a=5

b=2

try:

print(a/b)

except Exception:

print("number can not be divided by zero")

print("bye")

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ex4.py

2.5

 For example if you want to print the message like what is an error in a program

then we use “e” which is the representation or object of an exception.

a=5

b=0

PYTHON PROGRAMMING I YEAR/II SEM MRCET

140

try:

print(a/b)

except Exception as e:

print("number can not be divided by zero",e)

print("bye")

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ex5.py

number can not be divided by zero division by zero

bye

(Type of error)

Let us see some more examples:

I don‟t want to print bye but I want to close the file whenever it is opened.

a=5

b=2

try:

print("resource opened")

print(a/b)

print("resource closed")

except Exception as e:

print("number can not be divided by zero",e)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ex6.py

resource opened

2.5

PYTHON PROGRAMMING I YEAR/II SEM MRCET

143

resource closed

 Note: the file is opened and closed well, but see by changing the value of b to 0,

a=5

b=0

try:

print("resource opened")

print(a/b)

print("resource closed")

except Exception as e:

print("number can not be divided by zero",e)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ex7.py

resource opened

number can not be divided by zero division by zero

 Note: resource not closed

 To overcome this, keep print(“resource closed”) in except block, see it

a=5

b=0

try:

print("resource opened")

print(a/b)

except Exception as e:

print("number can not be divided by zero",e)

print("resource closed")

PYTHON PROGRAMMING I YEAR/II SEM MRCET

144

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ex8.py

resource opened

number can not be divided by zero division by zero

resource closed

 The result is fine that the file is opened and closed, but again change the value of

b to back (i.e., value 2 or other than zero)

a=5

b=2

try:

print("resource opened")

print(a/b)

except Exception as e:

print("number can not be divided by zero",e)

print("resource closed")

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ex9.py

resource opened

2.5

 But again the same problem file/resource is not closed

 To overcome this python has a feature called finally:

This block gets executed though we get an error or not

Note: Except block executes, only when try block has an error, but finally block

executes, even though you get an exception.

a=5

b=0

PYTHON PROGRAMMING I YEAR/II SEM MRCET

145

try:

print("resource open")

print(a/b)

k=int(input("enter a number"))

print(k)

except ZeroDivisionError as e:
print("the value can not be divided by zero",e)

finally:

Output:

print("resource closed")

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ex10.py

resource open

the value can not be divided by zero division by zero

resource closed

 change the value of b to 2 for above program, you see the output like

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ex10.py

resource open

2.5

enter a number 6

6

resource closed

 Instead give input as some character or string for above program, check the

output

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ex10.py

resource open

2.5

enter a number p

resource closed

Traceback (most recent call last):

File "C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ex10.py", line

7, in <module>

k=int(input("enter a number"))

ValueError: invalid literal for int() with base 10: ' p'

PYTHON PROGRAMMING I YEAR/II SEM MRCET

146

a=5

b=0

try:
print("resource open")

print(a/b)

k=int(input("enter a number"))

print(k)

except ZeroDivisionError as e:

print("the value can not be divided by zero",e)

except ValueError as e:

print("invalid input")

except Exception as e:

print("something went wrong...",e)

finally:

print("resource closed")

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ex11.py

resource open

the value can not be divided by zero division by zero

resource closed

 Change the value of b to 2 and give the input as some character or string (other

than int)

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ex12.py

resource open

2.5

enter a number p

invalid input

resource closed

	MALLA REDDY COLLEGE OF ENGINEERING &TECHNOLOGY
	MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY
	UNIT I
	Introduction to Computing:

	Computer Hardware
	Computer Software

	Computer Languages:
	Machine Languages
	Symbolic Languages:
	High Level Languages:
	Assembler
	Compiler
	Interpreter
	Example: Algorithm/pseudo code to add two numbers
	FLOW CHART:
	Example: Flowchart to add two numbers
	Beginning with Python programming:
	2) Writing first program:
	The following are the primary factors to use python in day-to-day life:
	2. Indentation
	3. It’s free (open source)
	4. It’s Powerful
	5. It’s Portable
	6. It’s easy to use and learn
	4. Interpreted Language
	8. Interactive Programming Language
	9. Straight forward syntax
	Steps to be followed and remembered:
	Working with Python Python Code Execution:
	Source code extension is .py
	python MyFile.py
	# To verify the type of any object in Python, use the type() function:
	Example:
	Output:
	String slices:
	For example 1−
	Output: (1)
	Immutability:
	String functions and methods:
	Suppressing Special Character:
	List operations:
	List slices:
	List methods:
	List loop:
	Method #1: For loop
	Output: (2)
	Method #2: For loop and range()
	Output: (3)
	Method #3: using while loop
	Mutability:
	Aliasing:
	For ex:
	Output: (4)
	Cloning Lists:
	Example: (1)
	C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/clo.py
	List parameters:
	Tuple:
	Example: (2)
	TypeError: 'tuple' object does not support item assignment
	Tuple Assignment
	Tuple as return values:
	Output: (5)
	Output: (6)
	Tuple methods:
	Set:
	Dictionaries:
	Examples:
	To access specific value of a dictionary, we must pass its key,
	To access keys and values and items of dictionary:
	Iterating over (key, value) pairs:
	List of Dictionaries:
	Data Type conversions:
	Examples: (1)
	Floats:
	Output: (7)
	Strings:
	Output: (8)
	UNIT II
	Assigning Values to Variables:
	Multiple Assignment:
	For example −
	Output Variables:
	Example
	Output
	Example (1)
	Output: (9)
	Examples: (2)
	Arithmetic operators
	Comparison operators
	Identity operators
	Bitwise operators
	Example 1:
	Example 2:
	Output: (10)
	Expressions:
	Some of the python expressions are:
	Conditional expression:
	>>> x = "1" if True else "2"
	CONTROLFLOWAND LOOPS
	Conditional (if):
	if Statement Flowchart:
	Example: Python if Statement
	Output: (11)
	Output: (12)
	Alternative if(If-Else):
	Syntax of if - else :
	If - else Flowchart :
	Example of if - else:
	Output: (13)
	--
	Output: (14)
	Chained Conditional: (If-elif-else):
	Syntax of if – elif - else :
	Flowchart of if – elif - else:
	Example of if - elif – else:
	Output: (15)

	Output: (16)
	Iteration:
	Statements:
	While loop:
	Syntax: Flowchart:
	Example Programs:
	output:
	Output: (17)
	Output: (18)
	Output: (19)
	Output: (20)
	Output: (21)
	For loop:
	Sample Program:
	Output: (22)
	Flowchart:
	#Iterating over the tuple
	Output: (23)
	Output: (24)
	Nested For loop:
	Syntax:
	# Example 1 of Nested For Loops (Pattern Programs)
	Output: (25)
	# Example 2 of Nested For Loops (Pattern Programs)
	Output: (26)
	Breakand continue:
	Flowchart: (1)
	Output: (27)
	# Program to display all the elements before number 88
	Output: (28)
	Output: (29)
	Output: (30)
	Example: (3)
	Output: (31)
	Similarily we can also write,
	UNIT IV
	Output: (32)
	Output: (33)
	Parameters and arguments:
	Example: (4)
	Output: (34)
	Some examples on functions:
	Output: (35)
	#Type1 : No parameters and no return type
	Output: (36)
	#Type 2: with param with out return type
	Output: (37)
	#Type 3: without param with return type
	Output: (38)
	#Type 4: with param with return type
	Output: (39)
	Syntax: (1)
	.
	. (1)
	Example: (5)
	#calling function in python:
	Output: (40)
	Output: (41)
	Output: (42)
	Output: (43)
	Output: (44)
	Output: (45)
	Output: (46)
	#Passing Arguments
	Output: (47)
	#Keyword Arguments
	Output: (48)
	#Default Arguments
	Variable-length arguments
	Output: (49)
	#Program to find area of a circle using function use single return value function with argument.
	Output: (50)
	#Program to write sum different product and function.
	using arguments with return value
	Output: (51)
	#program to find biggest of two numbers using functions.
	Output: (52)
	#program to find biggest of two numbers using functions.(nested if)
	Output: (53)
	#Writer a program to read one subject mark and print pass or fail use single return values function with argument.
	Output: (54)
	#Write a program to display mrecetcse dept 10 times on the screen.(while loop)
	Output: (55)
	Use of Lambda functions:
	# Write a program to double a given number
	Output: (56)
	#Write a program to sum of two numbers
	Output: (57)
	Output: (58)
	Powerful Lamda function in python:
	Filter():
	#Write a program to filter() function to filter out only even numbers from the given list
	Output: (59)
	#Write a program for filter() function to print the items greater than 4
	Output: (60)
	Map() :
	#Write a program for map() function to double all the items in the list
	Output: (61)
	# Write a program to seperate the letters of the word "hello" and add the letters as items of the list.
	Output: (62)
	#Write a program for map() function to double all the items in the list?
	Output: (63)
	#Write a program to find some of the numbers for the elements of the list by using reduce()
	Output: (64)
	#Write a program for reduce() function to print the product of items in a list
	Output: (65)
	Return values:
	# returns the area of a circle with the given radius:
	(or)
	# Write a Python function that takes two lists and returns True if they have at least one common member.
	Output: (66)
	Local and Global scope:
	# create a global variable
	Output: (67)
	# create a local variable
	Output: (68)
	Then when we try to run it shows an error,
	# use local and global variables in same code
	Output: (69)
	# use Global variable and Local variable with same name
	Output: (70)
	Note: You cannot sort a list that contains BOTH string values AND numeric values. Syntax:
	Example: (6)
	How to use range():
	Example: (7)
	Output: (71)
	File I/O:
	Text files:
	Reading and Writing files:
	Note: All the program files and text files need to saved together in a particular file then only the program performs the operations in the given file mode
	# Write a python program to open and write “hello world” into a file?
	Output: (72)
	Note: In the above program the 1.txt file is created automatically and adds hello world into txt file
	# Write a python program to write the content “hi python programming” for the existing file.
	Output: (73)
	# Write a python program to open and write the content to file and read it.
	Output: (74)
	Note: It creates the abc.txt file automatically and writes the data into it
	Errors and Exceptions:
	ZeroDivisionError:
	OverflowError:
	ImportError:
	IndexError:
	TypeError:
	IndentationError:
	Syntax errors:
	Run-time error:
	Key Error:
	Value Error:
	Different types of exceptions:
	Handling Exceptions:
	Syntax: (2)
	For ex: (1)
	Output: (75)
	 The above is normal execution with no error, but if we say when b=0, it is a critical and gives error, see below
	Output: (76)
	 To overcome this we handle exceptions using except keyword
	Output: (77)
	 The except block executes only when try block has an error, check it below
	Output: (78)
	 For example if you want to print the message like what is an error in a program then we use “e” which is the representation or object of an exception.
	Output: (79)
	Let us see some more examples:
	Output: (80)
	 Note: the file is opened and closed well, but see by changing the value of b to 0,
	Output: (81)
	 Note: resource not closed
	Output: (82)
	 The result is fine that the file is opened and closed, but again change the value of b to back (i.e., value 2 or other than zero)
	Output: (83)
	 But again the same problem file/resource is not closed
	Note: Except block executes, only when try block has an error, but finally block executes, even though you get an exception.
	Output: (84)
	 change the value of b to 2 for above program, you see the output like
	 Instead give input as some character or string for above program, check the output
	Output: (85)
	 Change the value of b to 2 and give the input as some character or string (other than int)

